Lourdes Irusta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8176690/publications.pdf Version: 2024-02-01

LOUDDES DUISTA

#	Article	IF	CITATIONS
1	Polydimethylsiloxane containing waterborne hydrophobic polyurethane coatings with good adhesion to metals: Synthesis and characterization. Progress in Organic Coatings, 2022, 162, 106564.	1.9	7
2	Enhanced and Reusable Poly(hydroxy urethane)-Based Low Temperature Hot-Melt Adhesives. ACS Polymers Au, 2022, 2, 194-207.	1.7	15
3	Polyurethane/acrylic hybrid dispersions containing phosphorus reactive flame retardants as transparent coatings for wood. Progress in Organic Coatings, 2022, 170, 107005.	1.9	5
4	Synthesis of segmented polyurethanes containing different oligo segments: Experimental and computational approach. Progress in Organic Coatings, 2021, 150, 105965.	1.9	7
5	Healable and self-healing polyurethanes using dynamic chemistry. Progress in Polymer Science, 2021, 114, 101362.	11.8	132
6	Recyclable Epoxy Resin via Simultaneous Dual Permanent/Reversible Crosslinking Based on Diels–Alder Chemistry. Macromolecular Chemistry and Physics, 2021, 222, 2100146.	1.1	12
7	Recyclable, remendable and healing polyurethane/acrylic coatings from UV curable waterborne dispersions containing Diels-Alder moieties. Progress in Organic Coatings, 2020, 139, 105460.	1.9	20
8	Microphase Arrangement of Smart Superhydrophilic Segmented Polyurethanes at Their Interface with Water. Langmuir, 2020, 36, 13201-13209.	1.6	8
9	Fully Reversible Spherulitic Morphology in Cationically Photopolymerized DGEBA/PCL Shape-Memory Blends. Macromolecules, 2020, 53, 1368-1379.	2.2	12
10	Reprogrammable Permanent Shape Memory Materials Based on Reversibly Crosslinked Epoxy/PCL Blends. Molecules, 2020, 25, 1568.	1.7	7
11	Unravelling fullerene–perovskite interactions introduces advanced blend films for performance-improved solar cells. Sustainable Energy and Fuels, 2019, 3, 2779-2787.	2.5	16
12	One pot stimuli-responsive linear waterborne polyurethanes via Diels-Alder reaction. Progress in Organic Coatings, 2019, 130, 31-43.	1.9	22
13	Synthesis of self-healable waterborne isocyanate-free poly(hydroxyurethane)-based supramolecular networks by ionic interactions. Polymer Chemistry, 2019, 10, 2723-2733.	1.9	41
14	Synthesis and comprehensive study on industrially relevant flame retardant waterborne polyurethanes based on phosphorus chemistry. Progress in Organic Coatings, 2019, 131, 397-406.	1.9	43
15	PET- <i>ran</i> -PLA Partially Degradable Random Copolymers Prepared by Organocatalysis: Effect of Poly(<scp>l</scp> -lactic acid) Incorporation on Crystallization and Morphology. ACS Sustainable Chemistry and Engineering, 2019, 7, 8647-8659.	3.2	28
16	Analysis of the Process Parameters for Obtaining a Stable Electrospun Process in Different Composition Epoxy/Poly Îμ-Caprolactone Blends with Shape Memory Properties. Polymers, 2019, 11, 475.	2.0	16
17	Dispersion Characteristics and Curing Behaviour of Waterborne UV Crosslinkable Polyurethanes Based on Renewable Dimer Fatty Acid Polyesters. Journal of Polymers and the Environment, 2019, 27, 189-197.	2.4	12

Miscibility and degradation of polymer blends based on biodegradable poly(butylene) Tj ETQq0 0 0 rgBT /Overlock $10_{2.7}$ Tf 50 62_{33} Td (adipa

#	Article	IF	CITATIONS
19	Screening of different organocatalysts for the sustainable synthesis of PET. European Polymer Journal, 2018, 104, 170-176.	2.6	36
20	In situ monitoring of isophorone diisocyanate-based flexible polyurethane foams formation. Journal of Cellular Plastics, 2018, 54, 37-52.	1.2	7
21	Nanostructure development in polystyrene-b -polybutadiene-b -poly(methyl methacrylate) (SBM) thin films by atomic force microscopy: Effect of copolymer composition and solvent. Polymer Engineering and Science, 2018, 58, 422-429.	1.5	2
22	Thermal and fire behavior of isophorone diisocyanate based polyurethane foams containing conventional flame retardants. Journal of Applied Polymer Science, 2018, 135, 45944.	1.3	8
23	Effect of hydrogen bonding on the physicochemical and rheological features of chemically modified phenoxy. Polymer, 2018, 159, 12-22.	1.8	7
24	Unexpected Synthesis of Segmented Poly(hydroxyurea–urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis. Macromolecules, 2018, 51, 5556-5566.	2.2	69
25	Nanostructured polymer blends based on polystyreneâ€ <i>bâ€</i> polybutadieneâ€ <i>b</i> â€poly(methyl) Ţ homopolymers. Polymer International, 2017, 66, 1031-1036.	j ETQq1 1 0.1 1.6	784314 rgBT 4
26	The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats. Carbohydrate Polymers, 2017, 166, 146-155.	5.1	24
27	Aromatic diselenide crosslinkers to enhance the reprocessability and self-healing of polyurethane thermosets. Polymer Chemistry, 2017, 8, 3641-3646.	1.9	102
28	Electrospinning of cationically polymerized epoxy/polycaprolactone blends to obtain shape memory fibers (SMF). European Polymer Journal, 2017, 94, 376-383.	2.6	20
29	Antimicrobial polyurethane foams having cationic ammonium groups. Journal of Applied Polymer Science, 2017, 134, 45473.	1.3	23
30	Polyurethanes based on isophorone diisocyanate trimer and polypropylene glycol crosslinked by thermal reversible diels alder reactions. Journal of Applied Polymer Science, 2017, 134, .	1.3	26
31	Autonomic healable waterborne organic-inorganic polyurethane hybrids based on aromatic disulfide moieties. EXPRESS Polymer Letters, 2017, 11, 266-277.	1.1	54
32	Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. European Polymer Journal, 2016, 84, 750-758.	2.6	14
33	Study of the crosslinking process of waterborne UV curable polyurethane acrylates. Progress in Organic Coatings, 2016, 99, 437-442.	1.9	42
34	Coumarin based light responsive healable waterborne polyurethanes. Progress in Organic Coatings, 2016, 99, 314-321.	1.9	45
35	Resistance to protein sorption as a model of antifouling performance of Poly(siloxane-urethane) coatings exhibiting phase separated morphologies. Progress in Organic Coatings, 2016, 99, 110-116.	1.9	21
36	Oxygen Barrier Properties of Waterborne Polyurethane/Silica Hybrids. Journal of Macromolecular Science - Physics, 2015, 54, 711-721.	0.4	3

#	Article	IF	CITATIONS
37	Biodegradable Copolyester Fibers by Solution Electrospinning. Journal of Renewable Materials, 2015, 3, 44-48.	1.1	0
38	UV-light responsive waterborne polyurethane based on coumarin: synthesis and kinetics of reversible chain extension. Journal of Polymer Research, 2014, 21, 1.	1.2	23
39	Microphase separation and hydrophobicity of urethane/siloxane copolymers with low siloxane content. Progress in Organic Coatings, 2014, 77, 798-802.	1.9	20
40	Polymer/silica nanohybrids by means of tetraethoxysilane sol–gel condensation onto waterborne polyurethane particles. Progress in Organic Coatings, 2014, 77, 1436-1442.	1.9	25
41	Performance evaluation of alkyd coatings for corrosion protection in urban and industrial environments. Progress in Organic Coatings, 2013, 76, 1273-1278.	1.9	14
42	Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: Adhesion properties. Progress in Organic Coatings, 2013, 76, 1230-1235.	1.9	42
43	Tailored Morphologies of Poly(styrene-block-butadiene-block-methyl methacrylate) Triblock Copolymers and Their Blends with Polystyrene Homopolymers. Macromolecular Symposia, 2012, 321-322, 124-129.	0.4	0
44	Synthesis and Rheological Behavior of Supramolecular Ionic Networks Based on Citric Acid and Aliphatic Diamines. Macromolecules, 2012, 45, 7599-7606.	2.2	49
45	Application of TGA/FTIR to the study of the thermal degradation mechanism of silanized poly(ether-urethanes). Polymer Degradation and Stability, 2012, 97, 1671-1679.	2.7	30
46	Urethane/Siloxane Copolymers with Hydrophobic Properties. Macromolecular Symposia, 2012, 321-322, 150-154.	0.4	6
47	Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Journal of Polymer Research, 2012, 19, 1.	1.2	38
48	Preparation of superhydrophobic silica nanoparticles by microwave assisted sol–gel process. Journal of Sol-Gel Science and Technology, 2012, 61, 8-13.	1.1	13
49	Oxygen permeability through poly(ethylene-co-vinyl acetate)/clay nanocomposites prepared by microwave irradiation. Journal of Membrane Science, 2011, 373, 173-177.	4.1	13
50	Waterborne polyurethane dispersions obtained by the acetone process: A study of colloidal features. Journal of Applied Polymer Science, 2011, 120, 2054-2062.	1.3	60
51	Production of hydrophobic surfaces in biodegradable and biocompatible polymers using polymer solution electrospinning. Journal of Applied Polymer Science, 2011, 120, 1520-1524.	1.3	6
52	Silica nanoparticles obtained by microwave assisted sol–gel process: multivariate analysis of the size and conversion dependence. Journal of Sol-Gel Science and Technology, 2010, 53, 667-672.	1.1	14
53	Characterization of silanized poly(ether-urethane) hybrid systems using thermogravimetric analysis (TG). Journal of Thermal Analysis and Calorimetry, 2010, 101, 331-337.	2.0	10
54	Electrospinning of waterborne polyurethanes. Journal of Applied Polymer Science, 2010, 115, 1176-1179.	1.3	41

#	Article	IF	CITATIONS
55	Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polymer, 2010, 51, 5051-5057.	1.8	132
56	Pyrolysis analysis of different Cuban natural fibres by TGA and GC/FTIR. Biomass and Bioenergy, 2010, 34, 1573-1577.	2.9	12
57	Infrared study of the photochemical behaviour of aromatic poly(ether urethanes): effect of various stabilizers. E-Polymers, 2009, 9, .	1.3	3
58	Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes: Comparison between zirconium and tin catalysts in the polymerization process. Progress in Organic Coatings, 2009, 66, 291-295.	1.9	87
59	Migration of antifog additives in agricultural films of lowâ€density polyethylene and ethyleneâ€vinyl acetate copolymers. Journal of Applied Polymer Science, 2009, 111, 2299-2307.	1.3	23
60	Role of specific interactions on fiber formation in the electrospinning of poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 2922-2928.	10 Tf 50 5 1.3	47 Td (pheno 4
61	Comparison of synthetic procedures for the preparation of sol–gel derived phenoxy-silica hybrid materials. Journal of Sol-Gel Science and Technology, 2009, 49, 19-28.	1.1	3
62	Photooxidation and stabilization of silanised poly(ether-urethane) hybrid systems. Polymer Degradation and Stability, 2007, 92, 2173-2180.	2.7	7
63	Synthesis of silanized polyether urethane hybrid systems. Study of the curing process through hydrogen bonding interactions. European Polymer Journal, 2006, 42, 2069-2080.	2.6	34
64	Determination of the self-association and inter-association equilibrium constants of a carboxylic acid and its mixtures with pyridine derivates. Vibrational Spectroscopy, 2006, 41, 21-27.	1.2	6
65	Infrared study of the photochemical behaviour of aromatic Poly (ether urethanes). E-Polymers, 2006, 6, .	1.3	Ο
66	Application of pyrolysis/gas chromatography/Fourier transform infrared spectroscopy and TGA techniques in the study of thermal degradation of poly (3-hydroxybutyrate). Polymer Degradation and Stability, 2005, 87, 347-354.	2.7	54
67	Infrared spectroscopic studies of the self-association of aromatic urethanes. Vibrational Spectroscopy, 2005, 39, 144-150.	1.2	3
68	Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites. Composites Science and Technology, 2005, 65, 2189-2197.	3.8	39
69	Miscibility behaviour of amorphous poly(3-hydroxybutyrate) (a-PHB)/styrene–vinyl phenol copolymer (STY-co-VPH) blends applying an association model. Polymer, 2004, 45, 1477-1483.	1.8	11
70	Thermodynamics of hydrogen bonding in polycomplexes of poly(4-vinylpyridine) with maleic acid-alt-ethylene copolymer. Thermochimica Acta, 2003, 402, 209-218.	1.2	21
71	Hydrogen-Bonding Interactions between Formic Acid and Pyridine. Journal of Physical Chemistry A, 2002, 106, 4187-4191.	1.1	41
72	Scavenging of FluorinatedN,Nâ€~-Dialkylureas by Hydrogen Binding:  A Novel Separation Method for Fluorous Synthesis. Organic Letters, 2001, 3, 2361-2364.	2.4	36

#	Article	IF	CITATIONS
73	Infrared spectroscopic studies of the urethane/ether inter-association. Vibrational Spectroscopy, 2001, 27, 183-191.	1.2	11
74	Aromatic poly(ester–urethanes): effect of the polyol molecular weight on the photochemical behaviour. Polymer, 2000, 41, 3297-3302.	1.8	28
75	Infrared spectroscopic studies of the self-association of ethyl urethane. Vibrational Spectroscopy, 2000, 23, 187-197.	1.2	20
76	The effect of a miscible and an immiscible polymeric modifier on the mechanical and rheological properties of PVC. European Polymer Journal, 2000, 36, 1011-1025.	2.6	30
77	Aromatic poly(ether-urethanes): effect of the polyol molecular weight on the photochemical behaviour. Polymer, 1999, 40, 4821-4831.	1.8	14
78	Photooxidative behaviour of segmented aliphatic polyurethanes. Polymer Degradation and Stability, 1999, 63, 113-119.	2.7	56