Denny M Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8176180/publications.pdf

Version: 2024-02-01

566801 610482 35 681 15 24 citations g-index h-index papers 38 38 38 559 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The extreme solar and geomagnetic storms on 1940 March 20–25. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1709-1723.	1.6	9
2	The Extreme Space Weather Event in 1941 February/March. Astrophysical Journal, 2021, 908, 209.	1.6	9
3	Numerical Simulations of the Geospace Response to the Arrival of an Idealized Perfect Interplanetary Coronal Mass Ejection. Space Weather, 2021, 19, e2020SW002489.	1.3	20
4	Radiation Belt Response to Fast Reverse Shock at Geosynchronous Orbit. Astrophysical Journal, 2021, 910, 154.	1.6	3
5	Recreating the Horizontal Magnetic Field at Colaba During the Carrington Event With Geospace Simulations. Space Weather, 2021, 19, e2020SW002585.	1.3	8
6	The Current State and Future Directions of Modeling Thermosphere Density Enhancements During Extreme Magnetic Storms. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	9
7	Impact Angle Control of Local Intense d <i>B</i> /i>/d <i>t</i> /i> Variations During Shockâ€Induced Substorms. Space Weather, 2021, 19, .	1.3	9
8	Probabilistic Forecasts of Storm Sudden Commencements From Interplanetary Shocks Using Machine Learning. Space Weather, 2020, 18, e2020SW002603.	1.3	18
9	Interplanetary Shock Impact Angles Control Magnetospheric ULF Wave Activity: Wave Amplitude, Frequency, and Power Spectra. Geophysical Research Letters, 2020, 47, e2020GL090857.	1.5	13
10	Estimating Satellite Orbital Drag During Historical Magnetic Superstorms. Space Weather, 2020, 18, e2020SW002472.	1.3	15
11	Intensity and time series of extreme solar-terrestrial storm in 1946 March. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5507-5517.	1.6	18
12	Interhemispheric Asymmetries in the Ground Magnetic Response to Interplanetary Shocks: The Role of Shock Impact Angle. Space Weather, 2020, 18, e2019SW002427.	1.3	11
13	The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun. Astrophysical Journal Letters, 2020, 897, L10.	3.0	36
14	An Analysis of Trouvelot's Auroral Drawing on 1/2 March 1872: Plausible Evidence for Recurrent Geomagnetic Storms. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028227.	0.8	7
15	A possible case of sporadic aurora observed at Rio de Janeiro. Earth, Planets and Space, 2020, 72, .	0.9	3
16	Thermospheric Heating and Cooling Times During Geomagnetic Storms, Including Extreme Events. Geophysical Research Letters, 2019, 46, 12739-12746.	1.5	24
17	Satellite Orbital Drag During Magnetic Storms. Space Weather, 2019, 17, 1510-1533.	1.3	35
18	Temporal and Spatial Evolutions of a Large Sunspot Group and Great Auroral Storms Around the Carrington Event in 1859. Space Weather, 2019, 17, 1553-1569.	1.3	68

#	Article	IF	Citations
19	Using Mutual Information to Determine Geoeffectiveness of Solar Wind Phase Fronts With Different Front Orientations. Journal of Geophysical Research: Space Physics, 2019, 124, 1582-1592.	0.8	10
20	Effects of Nearly Frontal and Highly Inclined Interplanetary Shocks on High‣atitude Fieldâ€Aligned Currents (FACs). Space Weather, 2019, 17, 1659-1673.	1.3	9
21	How do interplanetary shock impact angles control the size of the geoeffective magnetosphere?. Advances in Space Research, 2019, 63, 317-326.	1.2	17
22	Geoeffectiveness of interplanetary shocks controlled by impact angles: A review. Advances in Space Research, 2018, 61, 1-44.	1.2	45
23	Geomagnetically Induced Currents Caused by Interplanetary Shocks With Different Impact Angles and Speeds. Space Weather, 2018, 16, 636-647.	1.3	58
24	Magnetohydrodynamic Shocks in the Interplanetary Space: a Theoretical Review. Brazilian Journal of Physics, 2017, 47, 81-95.	0.7	19
25	Thermosphere Global Time Response to Geomagnetic Storms Caused by Coronal Mass Ejections. Journal of Geophysical Research: Space Physics, 2017, 122, 10,762.	0.8	33
26	Geomagnetically Induced Currents: Principles. Brazilian Journal of Physics, 2017, 47, 552-560.	0.7	30
27	Highâ€Latitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement. Journal of Geophysical Research: Space Physics, 2017, 122, 11,559.	0.8	21
28	Reação da termosfera a tempestades geomagnéticas. Revista Brasileira De Ensino De Fisica, 2017, 39, .	0.2	0
29	Clima espacial e choques interplanet $ ilde{A}_i$ rios. Revista Brasileira De Ensino De Fisica, 2016, 38, .	0.2	1
30	Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity. Brazilian Journal of Physics, 2016, 46, 97-104.	0.7	17
31	Impact angle control of interplanetary shock geoeffectiveness: A statistical study. Journal of Geophysical Research: Space Physics, 2015, 120, 4313-4323.	0.8	51
32	lonosphere-magnetosphere coupling and field-aligned currents. Revista Brasileira De Ensino De Fisica, 2014, 36, .	0.2	3
33	Impact angle control of interplanetary shock geoeffectiveness. Journal of Geophysical Research: Space Physics, 2014, 119, 8188-8201.	0.8	52
34	Uma proposta para o ensino de teoria quântica de campos na graduação: a eletrodinâmica de Maxwell-Chern-Simons como motivação. Revista Brasileira De Ensino De Fisica, 2011, 33, .	0.2	0
35	Uma andorinha s \tilde{A}^3 n \tilde{A} £o faz ver \tilde{A} £o: 160 anos do legado de Richard Carrington. Revista Brasileira De Ensino De Fisica, 0, 42, .	0.2	0