Masoud Moshtaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8175718/publications.pdf

Version: 2024-02-01

516215 794141 19 473 16 19 citations g-index h-index papers 19 19 19 136 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanisms of hydrogen embrittlement in high-strength aluminum alloys containing coherent or incoherent dispersoids. Corrosion Science, 2022, 194, 109895.	3.0	35
2	Hydrogen absorption rate and hydrogen diffusion in a ferritic steel coated with a micro- or nanostructured ZnNi coating. Electrochemistry Communications, 2022, 134, 107169.	2.3	22
3	Investigation of the effects of temperature and exposure time on the corrosion behavior of a ferritic steel in CO2 environment using the optimized linear polarization resistance method. Results in Materials, 2022, 14, 100282.	0.9	8
4	Temperature mitigates the hydrogen embrittlement sensitivity of martensitic steels in slow strain rates. Vacuum, 2022, 202, 111187.	1.6	10
5	Hydrogen trapping and desorption affected by ferrite grain boundary types in shielded metal and flux-cored arc weldments with Ni addition. International Journal of Hydrogen Energy, 2022, 47, 20676-20683.	3.8	35
6	Combined thermal desorption spectroscopy, hydrogen visualization, HRTEM and EBSD investigation of a Ni–Fe–Cr alloy: The role of hydrogen trapping behavior in hydrogen-assisted fracture. Materials Science & Degraphy: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143428.	2.6	13
7	Effect of Workâ∈Hardening Mechanisms in Asymmetrically Cyclicâ€Loaded Austenitic Stainless Steels on Lowâ€Cycle and Highâ€Cycle Fatigue Behavior. Steel Research International, 2021, 92, .	1.0	19
8	Environmental hydrogen embrittlement associated with decohesion and void formation at soluble coarse particles in a cold-rolled Al–Cu based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 139850.	2.6	37
9	On the role of traps in the microstructural control of environmental hydrogen embrittlement of a 7xxx series aluminum alloy. Journal of Alloys and Compounds, 2021, 855, 157300.	2.8	41
10	Unraveling the effect of dislocations and deformation-induced boundaries on environmental hydrogen embrittlement behavior of a cold-rolled Al–Zn–Mg–Cu alloy. International Journal of Hydrogen Energy, 2021, 46, 8285-8299.	3.8	48
11	Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al–Zn–Mg–Cu alloy. Vacuum, 2021, 184, 109937.	1.6	26
12	Influence of microstructure-driven hydrogen distribution on environmental hydrogen embrittlement of an Al–Cu–Mg alloy. International Journal of Hydrogen Energy, 2021, 46, 37502-37508.	3.8	26
13	Role of Ultrasonic Shot Peening in Environmental Hydrogen Embrittlement Behavior of 7075-T6 Alloy. Hydrogen, 2021, 2, 377-385.	1.7	18
14	Effect of environmental relative humidity on hydrogen-induced mechanical degradation in an Al–Zn–Mg–Cu alloy. Vacuum, 2021, 192, 110489.	1.6	28
15	Effect of strain rate on environmental hydrogen embrittlement susceptibility of a severely cold-rolled Al–Cu alloy. Vacuum, 2020, 172, 109057.	1.6	30
16	Characterization of Dislocation Evolution in Cyclically Loaded Austenitic and Ferritic Stainless Steels via XRD Line-profile Analysis. ISIJ International, 2019, 59, 1591-1598.	0.6	22
17	Effect of dwelling time in VIM furnace on chemical composition and mechanical properties of a Ni–Fe–Cr alloy. Vacuum, 2019, 169, 108890.	1.6	19
18	The effect of removing worn particles by ultrasonic cleaning on the wear characterization of LM13 alloy. Surface Engineering and Applied Electrochemistry, 2015, 51, 382-388.	0.3	16

#	Article	IF	CITATIONS
19	Effect of vacuum degree in VIM furnace on mechanical properties of Ni–Fe–Cr based alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 2124-2130.	1.7	20