
Sally A Mackenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8175621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics, 2016, 48, 1225-1232.	21.4	479
2	Higher Plant Mitochondria. Plant Cell, 1999, 11, 571-585.	6.6	328
3	Plant Mitochondrial Recombination Surveillance Requires Unusual RecA and MutS Homologs. Plant Cell, 2007, 19, 1251-1264.	6.6	239
4	Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5968-5973.	7.1	233
5	Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biology, 2011, 9, 64.	3.8	209
6	Stoichiometric Shifts in the Common Bean Mitochondrial Genome Leading to Male Sterility and Spontaneous Reversion to Fertility. Plant Cell, 1998, 10, 1163-1180.	6.6	188
7	Diversity of the Arabidopsis Mitochondrial Genome Occurs via Nuclear-Controlled Recombination Activity. Genetics, 2009, 183, 1261-1268.	2.9	161
8	Dual-Domain, Dual-Targeting Organellar Protein Presequences in Arabidopsis Can Use Non-AUG Start Codons. Plant Cell, 2005, 17, 2805-2816.	6.6	135
9	MutS HOMOLOG1 Is a Nucleoid Protein That Alters Mitochondrial and Plastid Properties and Plant Response to High Light Â. Plant Cell, 2011, 23, 3428-3441.	6.6	125
10	Tracing Evolutionary and Developmental Implications of Mitochondrial Stoichiometric Shifting in the Common Bean. Genetics, 2001, 158, 851-864.	2.9	125
11	Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1766-1770.	7.1	121
12	A Cytoplasmic Male Sterility–Associated Mitochondrial Peptide in Common Bean Is Post-Translationally Regulated. Plant Cell, 1998, 10, 1217-1228.	6.6	102
13	Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nature Communications, 2015, 6, 6386.	12.8	98
14	Plant organellar protein targeting: a traffic plan still under construction. Trends in Cell Biology, 2005, 15, 548-554.	7.9	91
15	Mitochondrial Genome Dynamics in Plants and Animals: Convergent Gene Fusions of a MutS Homologue. Journal of Molecular Evolution, 2006, 63, 165-173.	1.8	89
16	Nuclear Genes That Encode Mitochondrial Proteins for DNA and RNA Metabolism Are Clustered in the Arabidopsis Genome[W]. Plant Cell, 2003, 15, 1619-1631.	6.6	81
17	Genetic and Molecular Characterization of the I Locus of Phaseolus vulgaris. Genetics, 2006, 172, 1229-1242.	2.9	80
18	The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 1938-1948.	6.6	80

SALLY A MACKENZIE

#	Article	IF	CITATIONS
19	<i>In vivo</i> extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling. Plant Journal, 2013, 73, 509-520.	5.7	79
20	Extensive Rearrangement of the Arabidopsis Mitochondrial Genome Elicits Cellular Conditions for Thermotolerance. Plant Physiology, 2010, 152, 1960-1970.	4.8	77
21	Pedigree assessment using RAPD-DGGE in cereal crop species. Theoretical and Applied Genetics, 1993, 85, 497-505.	3.6	74
22	An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnology Journal, 2018, 16, 1836-1847.	8.3	73
23	The Chloroplast Triggers Developmental Reprogramming When MUTS HOMOLOG1 Is Suppressed in Plants Â. Plant Physiology, 2012, 159, 710-720.	4.8	66
24	MutS HOMOLOG1-Derived Epigenetic Breeding Potential in Tomato. Plant Physiology, 2015, 168, 222-232.	4.8	66
25	MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. Molecular Plant, 2016, 9, 245-260.	8.3	62
26	Plant Mitochondrial Genomes and Recombination. , 2011, , 65-82.		60
27	Gene network reconstruction identifies the authentic <i>trans</i> â€prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinoneâ€9 in Arabidopsis. Plant Journal, 2012, 69, 366-375.	5.7	57
28	Specialized Plastids Trigger Tissue-Specific Signaling for Systemic Stress Response in Plants. Plant Physiology, 2018, 178, 672-683.	4.8	55
29	Participation of Leaky Ribosome Scanning in Protein Dual Targeting by Alternative Translation Initiation in Higher Plants Â. Plant Cell, 2009, 21, 157-167.	6.6	50
30	Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming. Nature Communications, 2020, 11, 2214.	12.8	50
31	Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theoretical and Applied Genetics, 2009, 118, 1361-1370.	3.6	48
32	MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nature Communications, 2020, 11, 5343.	12.8	48
33	Functional Modeling Identifies Paralogous Solanesyl-diphosphate Synthases That Assemble the Side Chain of Plastoquinone-9 in Plastids. Journal of Biological Chemistry, 2013, 288, 27594-27606.	3.4	44
34	Fertility Restoration Is Associated with Loss of a Portion of the Mitochondrial Genome in Cytoplasmic Male-Sterile Common Bean. Plant Cell, 1990, 2, 905.	6.6	39
35	Modulations in Gene Expression and Mapping of Genes Associated with Cyst Nematode Infection of Soybean. Molecular Plant-Microbe Interactions, 2001, 14, 42-54.	2.6	35
36	MSH1-Induced Non-Genetic Variation Provides a Source of Phenotypic Diversity in Sorghum bicolor. PLoS ONE, 2014, 9, e108407.	2.5	35

SALLY A MACKENZIE

#	Article	IF	CITATIONS
37	MutS HOMOLOG1 silencing mediates <i>ORF220</i> substoichiometric shifting and causes male sterility in <i>Brassica juncea</i> . Journal of Experimental Botany, 2016, 67, 435-444.	4.8	34
38	Construction and characterization of a common bean bacterial artificial chromosome library. , 1999, 40, 977-983.		33
39	Stress-responsive pathways and small RNA changes distinguish variable developmental phenotypes caused by MSH1 loss. BMC Plant Biology, 2017, 17, 47.	3.6	26
40	Plant science decadal vision 2020–2030: Reimagining the potential of plants for a healthy and sustainable future. Plant Direct, 2020, 4, e00252.	1.9	26
41	A new take on organelleâ€mediated stress sensing in plants. New Phytologist, 2021, 230, 2148-2153.	7.3	22
42	Integrative Network Analysis of Differentially Methylated and Expressed Genes for Biomarker Identification in Leukemia. Scientific Reports, 2020, 10, 2123.	3.3	21
43	Organellar protein multi-functionality and phenotypic plasticity in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190182.	4.0	20
44	The expression of alternative oxidase and alternative respiratory capacity in cytoplasmic male sterile common bean. Sexual Plant Reproduction, 1993, 6, 257.	2.2	18
45	Soybean FGAM synthase promoters direct ectopic nematode feeding site activity. Genome, 2004, 47, 404-413.	2.0	18
46	Epigenomic plasticity of Arabidopsis msh1 mutants under prolonged cold stress. Plant Direct, 2018, 2, e00079.	1.9	16
47	Exploiting sterility and fertility variation in cytoplasmic male sterile vegetable crops. Horticulture Research, 2022, 9, .	6.3	15
48	Information Thermodynamics of Cytosine DNA Methylation. PLoS ONE, 2016, 11, e0150427.	2.5	14
49	The Unique Biology of Mitochondrial Genome Instability in Plants. , 0, , 36-49.		12
50	<scp>MutS HOMOLOG1</scp> mediates fertility reversion from cytoplasmic male sterile <i>Brassica juncea</i> in response to environment. Plant, Cell and Environment, 2021, 44, 234-246.	5.7	12
51	<i>>Ws-2</i> Introgression in a Proportion of <i>Arabidopsis thaliana Col-0</i> Stock Seed Produces Specific Phenotypes and Highlights the Importance of Routine Genetic Verification. Plant Cell, 2016, 28, 603-605.	6.6	11
52	Discrimination of DNA Methylation Signal from Background Variation for Clinical Diagnostics. International Journal of Molecular Sciences, 2019, 20, 5343.	4.1	10
53	Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation. International Journal of Molecular Sciences, 2016, 17, 938.	4.1	9
54	Utility of in vitro culture to the study of plant mitochondrial genome configuration and its dynamic features. Theoretical and Applied Genetics, 2012, 125, 449-454.	3.6	8

#	Article	IF	CITATIONS
55	Many Facets of Dynamic Plasticity in Plants. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034629.	5.5	8
56	Male sterility and hybrid seed production. , 2012, , 185-194.		4
57	Implementation of Epigenetic Variation in Sorghum Selection and Implications for Crop Resilience Breeding. Frontiers in Plant Science, 2021, 12, 798243.	3.6	4
58	Barley Yellow Dwarf Virus Resistance in a Wheat × Wheatgrass Population. Crop Science, 1993, 33, 595-599.	1.8	3
59	Approaches to Whole-Genome Methylome Analysis in Plants. Methods in Molecular Biology, 2020, 2093, 15-31.	0.9	3
60	The Plant Science Decadal Vision: Response to the Martin Commentary. Plant Cell, 2013, 25, 4775-4776.	6.6	0
61	Laser Scanning Confocal Microcopy for Arabidopsis Epidermal, Mesophyll, and Vascular Parenchyma Cells. Bio-protocol, 2017, 7, e2150.	0.4	0
62	Distinct Plastids Trigger Local Signaling for Systemic Stress Response in Plants. SSRN Electronic Journal, 0, , .	0.4	0