
Alexey V Glukhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8175328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Region-specific distribution of transversal-axial tubule system organization underlies heterogeneity of calcium dynamics in the right atrium. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H269-H284.	1.5	6
2	Caveolin-3 Prevents Swelling-Induced Membrane Damage via Regulation of ICl,swell Activity. Biophysical Journal, 2022, , .	0.2	1
3	Caveolin-3 is required for regulation of transient outward potassium current by angiotensin II in mouse atrial myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H787-H797.	1.5	4
4	Local hyperactivation of L-type Ca2+ channels increases spontaneous Ca2+ release activity and cellular hypertrophy in right ventricular myocytes from heart failure rats. Scientific Reports, 2021, 11, 4840.	1.6	11
5	Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1670-H1686.	1.5	34
6	Cellular and Molecular Mechanisms of Functional Hierarchy of Pacemaker Clusters in the Sinoatrial Node: New Insights into Sick Sinus Syndrome. Journal of Cardiovascular Development and Disease, 2021, 8, 43.	0.8	12
7	Intracellular Na+ Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An In Silico Analysis. International Journal of Molecular Sciences, 2021, 22, 5645.	1.8	13
8	Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Frontiers in Cardiovascular Medicine, 2021, 8, 662410.	1.1	8
9	Induced cardiac progenitor cells repopulate decellularized mouse heart scaffolds and differentiate to generate cardiac tissue. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118559.	1.9	21
10	Genetic Loss of <i>I</i> _{K1} Causes Adrenergic-Induced Phase 3 Early Afterdepolariz ations and Polymorphic and Bidirectional Ventricular Tachycardia. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008638.	2.1	10
11	Editorial: Cardiomyocyte Microdomains: An Emerging Concept of Local Regulation and Remodeling. Frontiers in Physiology, 2020, 11, 512.	1.3	0
12	A compartmentalized mathematical model of mouse atrial myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H485-H507.	1.5	18
13	Arrhythmogenic Interaction Between Sympathetic Tone and Mechanical Stretch in Rat Pulmonary Vein Myocardium. Frontiers in Physiology, 2020, 11, 237.	1.3	6
14	Caveolaeâ€Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis. Journal of the American Heart Association, 2019, 8, e012748.	1.6	34
15	Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation. Stem Cells, 2019, 37, 910-923.	1.4	30
16	Long QT syndrome caveolinâ $\in 3$ mutations differentially modulate K v 4 and Ca v 1.2 channels to contribute to action potential prolongation. Journal of Physiology, 2019, 597, 1531-1551.	1.3	19
17	Functional Microdomains in Heart's Pacemaker: A Step Beyond Classical Electrophysiology and Remodeling. Frontiers in Physiology, 2018, 9, 1686.	1.3	25
18	T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovascular Research, 2017, 113, 770-782.	1.8	53

Alexey V Glukhov

#	Article	IF	CITATIONS
19	Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure. Circulation Research, 2016, 119, 944-955.	2.0	101
20	High-resolution Optical Mapping of the Mouse Sino-atrial Node. Journal of Visualized Experiments, 2016, , .	0.2	12
21	Reduced response to IKr blockade and altered hERG1a/1b stoichiometry in human heart failure. Journal of Molecular and Cellular Cardiology, 2016, 96, 82-92.	0.9	37
22	Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View. BioMed Research International, 2015, 2015, 1-16.	0.9	29
23	Microdomain–specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophysical Reviews, 2015, 7, 43-62.	1.5	21
24	Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes. Circulation, 2015, 132, 2372-2384.	1.6	96
25	Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. European Heart Journal, 2015, 36, 686-697.	1.0	110
26	Upregulation of Adenosine A1 Receptors Facilitates Sinoatrial Node Dysfunction in Chronic Canine Heart Failure by Exacerbating Nodal Conduction Abnormalities Revealed by Novel Dual-Sided Intramural Optical Mapping. Circulation, 2014, 130, 315-324.	1.6	70
27	Functional roles of KATP channel subunits in metabolic inhibition. Journal of Molecular and Cellular Cardiology, 2013, 62, 90-98.	0.9	12
28	Sinoatrial Node Reentry in a Canine Chronic Left Ventricular Infarct Model. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 984-994.	2.1	41
29	Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy. Circulation, 2012, 125, 1835-1847.	1.6	142
30	Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure. Circulation, 2011, 123, 1881-1890.	1.6	134
31	Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle. Circulation Research, 2010, 106, 981-991.	2.0	282
32	Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H482-H491.	1.5	82
33	Differential KATP channel pharmacology in intact mouse heart. Journal of Molecular and Cellular Cardiology, 2010, 48, 152-160.	0.9	84