Jose A Ainsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8175266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiology Reviews, 2006, 30, 36-52.	3.9	241
2	Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nature Medicine, 2014, 20, 152-158.	15.2	160
3	Characterization of P55, a Multidrug Efflux Pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2001, 45, 800-804.	1.4	117
4	Role of the <i>Mycobacterium tuberculosis</i> P55 Efflux Pump in Intrinsic Drug Resistance, Oxidative Stress Responses, and Growth. Antimicrobial Agents and Chemotherapy, 2009, 53, 3675-3682.	1.4	116
5	The Multidrug Transporters Belonging to Major Facilitator Superfamily (MFS) in Mycobacterium tuberculosis. Molecular Medicine, 2002, 8, 714-724.	1.9	111
6	Aminoglycoside 2′―N â€acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2 â€f′)â€lc gene from Mycobacterium tuberculosis and the aac(2 â€f′)â€ld gene from Mycob smegmatis. Molecular Microbiology, 1997, 24, 431-441.	act ezi um	99
7	Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Review of Anti-Infective Therapy, 2012, 10, 983-998.	2.0	79
8	Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochemical Pharmacology, 2015, 96, 159-167.	2.0	77
9	Role of the Mmr Efflux Pump in Drug Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 751-757.	1.4	75
10	Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. Journal of Ethnopharmacology, 2011, 137, 114-120.	2.0	71
11	A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Molecular Microbiology, 1999, 34, 607-619.	1.2	69
12	Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum. Journal of Antimicrobial Chemotherapy, 2006, 57, 252-259.	1.3	65
13	Functional and Genetic Characterization of the Tap Efflux Pump in Mycobacterium bovis BCG. Antimicrobial Agents and Chemotherapy, 2012, 56, 2074-2083.	1.4	63
14	WhiA, a Protein of Unknown Function Conserved among Gram-Positive Bacteria, Is Essential for Sporulation inStreptomyces coelicolor A3(2). Journal of Bacteriology, 2000, 182, 5470-5478.	1.0	56
15	The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Molecular Medicine, 2002, 8, 714-24.	1.9	56
16	Zanthoxylum capense constituents with antimycobacterial activity against Mycobacterium tuberculosis in vitro and ex vivo within human macrophages. Journal of Ethnopharmacology, 2013, 146, 417-422.	2.0	53
17	Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. Journal of Antimicrobial Chemotherapy, 2007, 59, 544-547.	1.3	51
18	How can nanoparticles contribute to antituberculosis therapy?. Drug Discovery Today, 2017, 22, 600-607.	3.2	46

Jose A Ainsa

#	Article	IF	CITATIONS
19	Inhibition of Drug Efflux in Mycobacteria with Phenothiazines and Other Putative Efflux Inhibitors. Recent Patents on Anti-infective Drug Discovery, 2011, 6, 118-127.	0.5	45
20	Nanotechnologyâ€Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Advanced Therapeutics, 2021, 4, 2000113.	1.6	37
21	Design, synthesis and inhibitory activity against Mycobacterium tuberculosis thymidine monophosphate kinase of acyclic nucleoside analogues with a distal imidazoquinolinone. European Journal of Medicinal Chemistry, 2010, 45, 5910-5918.	2.6	33
22	Analysis of Mutations in Streptomycin-Resistant Strains Reveals a Simple and Reliable Genetic Marker for Identification of the Mycobacterium tuberculosis Beijing Genotype. Journal of Clinical Microbiology, 2013, 51, 2124-2130.	1.8	33
23	A Prodrug Approach for Improving Antituberculosis Activity of Potent Mycobacterium tuberculosis Type II Dehydroquinase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 6063-6084.	2.9	32
24	Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	32
25	Novel Streptomycin Resistance Gene from Mycobacterium fortuitum. Antimicrobial Agents and Chemotherapy, 2006, 50, 3920-3922.	1.4	29
26	Antituberculosis drugs: reducing efflux = increasing activity. Drug Discovery Today, 2017, 22, 592-599.	3.2	29
27	The complex whiJ locus mediates environmentally sensitive repression of development of Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek, 2010, 98, 225-236.	0.7	28
28	Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles. Frontiers in Microbiology, 2019, 10, 46.	1.5	28
29	Construction of a family of Mycobacterium/Escherichia coli shuttle vectors derived from pAL5000 and pACYC184: their use for cloning an antibiotic-resistance gene from Mycobacterium fortuitum. Gene, 1996, 176, 23-26.	1.0	27
30	Structure Guided Lead Generation toward Nonchiral <i>M. tuberculosis</i> Thymidylate Kinase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 2753-2775.	2.9	27
31	Measuring Efflux and Permeability in Mycobacteria. Methods in Molecular Biology, 2015, 1285, 227-239.	0.4	24
32	Discovery of antimicrobial compounds targeting bacterial type FAD synthetases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 241-254.	2.5	23
33	Design, Synthesis, and Efficacy Testing of Nitroethylene- and 7-Nitrobenzoxadiazol-Based Flavodoxin Inhibitors against <i>Helicobacter pylori</i> Drug-Resistant Clinical Strains and in <i>Helicobacter pylori</i> -Infected Mice. Journal of Medicinal Chemistry, 2019, 62, 6102-6115.	2.9	23
34	Identification of aminopyrimidineâ€sulfonamides as potent modulators of Wag31â€mediated cell elongation in mycobacteria. Molecular Microbiology, 2017, 103, 13-25.	1.2	22
35	Total Synthesis of Ripostatin B and Structure–Activity Relationship Studies on Ripostatin Analogs. Journal of Organic Chemistry, 2018, 83, 7150-7172	1.7	22
36	Matryoshka-type gastro-resistant microparticles for the oral treatment of <i>Mycobacterium tuberculosis</i> . Nanomedicine, 2019, 14, 707-726.	1.7	19

Jose A Ainsa

#	Article	IF	CITATIONS
37	Boldine-Derived Alkaloids Inhibit the Activity of DNA Topoisomerase I and Growth of Mycobacterium tuberculosis. Frontiers in Microbiology, 2018, 9, 1659.	1.5	16
38	Polypeptidic Micelles Stabilized with Sodium Alginate Enhance the Activity of Encapsulated Bedaquiline. Macromolecular Bioscience, 2019, 19, 1800397.	2.1	15
39	Mycobacterial Shuttle Vectors Designed for High-Level Protein Expression in Infected Macrophages. Applied and Environmental Microbiology, 2012, 78, 6829-6837.	1.4	12
40	The EU approved antimalarial pyronaridine shows antitubercular activity and synergy with rifampicin, targeting RNA polymerase. Tuberculosis, 2018, 112, 98-109.	0.8	12
41	Co-delivery of free vancomycin and transcription factor decoy-nanostructured lipid carriers can enhance inhibition of methicillin resistant Staphylococcus aureus (MRSA). PLoS ONE, 2019, 14, e0220684.	1.1	11
42	In silico discovery and biological validation of ligands of FAD synthase, a promising new antimicrobial target. PLoS Computational Biology, 2020, 16, e1007898.	1.5	11
43	Discovery of 3H-pyrrolo[2,3-c]quinolines with activity against Mycobacterium tuberculosis by allosteric inhibition of the glutamate-5-kinase enzyme. European Journal of Medicinal Chemistry, 2022, 232, 114206.	2.6	7
44	Transcriptional analysis of and resistance level conferred by the aminoglycoside acetyltransferase gene aac(2')-Id from Mycobacterium smegmatis. Journal of Antimicrobial Chemotherapy, 2007, 61, 39-45.	1.3	6
45	Selective Targeting of Human and Animal Pathogens of the Helicobacter Genus by Flavodoxin Inhibitors: Efficacy, Synergy, Resistance and Mechanistic Studies. International Journal of Molecular Sciences, 2021, 22, 10137.	1.8	4
46	Structure-aided optimization of non-nucleoside M.Âtuberculosis thymidylate kinase inhibitors. European Journal of Medicinal Chemistry, 2021, 225, 113784.	2.6	4
47	Measuring Efflux and Permeability in Mycobacteria. Methods in Molecular Biology, 2021, 2314, 231-245.	0.4	4
48	Synthesis and biological activity of dehydrophos derivatives. Organic and Biomolecular Chemistry, 2019, 17, 1097-1112.	1.5	3
49	Overcoming the Prokaryote/Eukaryote Barrier in Tuberculosis Treatment: A Prospect for the Repurposing and Use of Antiparasitic Drugs. Microorganisms, 2021, 9, 2335.	1.6	3
50	Title is missing!. , 2020, 16, e1007898.		0
51	Title is missing!. , 2020, 16, e1007898.		0
52	Title is missing!. , 2020, 16, e1007898.		0
53	Title is missing!. , 2020, 16, e1007898.		0