
David Inouye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8175236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change and phenology. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	3.6	40
2	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	0.9	43
3	Life-history traits predict responses of wild bees to climate variation. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212697.	1.2	8
4	Lagged and dormant season climate better predict plant vital rates than climate during the growing season. Global Change Biology, 2021, 27, 1927-1941.	4.2	24
5	Global trends in the number and diversity of managed pollinator species. Agriculture, Ecosystems and Environment, 2021, 322, 107653.	2.5	72
6	Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of Sciences, 2020, 1469, 26-37.	1.8	67
7	Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. Annual Review of Entomology, 2020, 65, 391-407.	5.7	137
8	Michael Soulé (1936–2020). Science, 2020, 369, 777-777.	6.0	2
9	Bee phenology is predicted by climatic variation and functional traits. Ecology Letters, 2020, 23, 1589-1598.	3.0	55
10	Towards a U.S. national program for monitoring native bees. Biological Conservation, 2020, 252, 108821.	1.9	54
11	Support early-career field researchers. Science, 2020, 368, 724-725.	6.0	25
12	Wild hummingbirds discriminate nonspectral colors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15112-15122.	3.3	51
13	Snowmelt velocity predicts vegetation green-wave velocity in mountainous ecological systems of North America. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102110.	1.4	6
14	Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology, 2019, 25, 3516-3527.	4.2	206
15	Reproductive losses due to climate changeâ€induced earlier flowering are not the primary threat to plant population viability in a perennial herb. Journal of Ecology, 2019, 107, 1931-1943.	1.9	56
16	The individual and combined effects of snowmelt timing and frost exposure on the reproductive success of montane forbs. Journal of Ecology, 2019, 107, 1970-1981.	1.9	26
17	Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology, 2019, 56, 100-106.	1.9	99

18 Climate change in other taxa and links to bird studies. , 2019, , 257-264.

#	Article	IF	CITATIONS
19	Phenological responses to multiple environmental drivers under climate change: insights from a longâ€ŧerm observational study and a manipulative field experiment. New Phytologist, 2018, 218, 517-529.	3.5	82
20	Variation in composition of two bumble bee species across communities affects nectar robbing but maintains pollinator visitation rate to an alpine plant, <i>Salvia przewalskii</i> . Ecological Entomology, 2018, 43, 363-370.	1.1	8
21	Direct and indirect effects of episodic frost on plant growth and reproduction in subalpine wildflowers. Global Change Biology, 2018, 24, 848-857.	4.2	43
22	ECOLOG â€L's Function in the Ecological Community. Bulletin of the Ecological Society of America, 2018, 99, 351-354.	0.2	3
23	Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and Forest Meteorology, 2017, 234-235, 222-235.	1.9	53
24	Words alone will not protect pollinators. Science, 2017, 355, 357-357.	6.0	9
25	Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees. Annals of Botany, 2017, 119, 1053-1059.	1.4	23
26	Pollinators shift to nectar robbers when florivory occurs, with effects on reproductive success in <i>Iris bulleyana</i> (Iridaceae). Plant Biology, 2017, 19, 760-766.	1.8	10
27	Detrending phenological time series improves climate–phenology analyses and reveals evidence of plasticity. Ecology, 2017, 98, 647-655.	1.5	63
28	Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecology Letters, 2017, 20, 1507-1515.	3.0	132
29	Multitrophic interactions mediate the effects of climate change on herbivore abundance. Oecologia, 2017, 185, 181-190.	0.9	18
30	A statistical estimator for determining the limits of contemporary and historic phenology. Nature Ecology and Evolution, 2017, 1, 1876-1882.	3.4	81
31	Confounding effects of spatial variation on shifts in phenology. Global Change Biology, 2017, 23, 1783-1791.	4.2	27
32	Temperature sensitivity thresholds to warming and cooling in phenophases of alpine plants. Climatic Change, 2016, 139, 579-590.	1.7	7
33	The effect of demographic correlations on the stochastic population dynamics of perennial plants. Ecological Monographs, 2016, 86, 480-494.	2.4	38
34	Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere, 2016, 7, e01267.	1.0	110
35	Sex-specific responses to climate change in plants alter population sex ratio and performance. Science, 2016, 353, 69-71.	6.0	81
36	Phenological change in a spring ephemeral: implications for pollination and plant reproduction. Global Change Biology, 2016, 22, 1779-1793.	4.2	94

#	Article	IF	CITATIONS
37	The next century of ESA publications. Bulletin of the Ecological Society of America, 2015, 96, 183-183.	0.2	0
38	The Value of Older Non-English Literature. Bulletin of the Ecological Society of America, 2015, 96, 211-214.	0.2	0
39	Temperature and snowfall trigger alpine vegetation greenâ€up on the world's roof. Global Change Biology, 2015, 21, 3635-3646.	4.2	168
40	Interspecific competition between a non-native metal-hyperaccumulating plant (Noccaea caerulescens,) Tj ETQq 63, 141.	0 0 0 rgBT 0.3	/Overlock 10 11
41	Turnover and reliability of flower communities in extreme environments: Insights from long-term phenology data sets. Journal of Arid Environments, 2015, 115, 27-34.	1.2	17
42	The next century of ESA publications. Frontiers in Ecology and the Environment, 2015, 13, 67-67.	1.9	0
43	The next century of ecology. Science, 2015, 349, 565-565.	6.0	8
44	The effect of repeated, lethal sampling on wild bee abundance and diversity. Methods in Ecology and Evolution, 2015, 6, 1044-1054.	2.2	79
45	Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community. Ecology, 2015, 96, 355-361.	1.5	55
46	Earth Stewardship: An Initiative by the Ecological Society of America to Foster Engagement to Sustain Planet Earth. Ecology and Ethics, 2015, , 173-194.	0.2	14
47	Shifts in flowering phenology reshape a subalpine plant community. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4916-4921.	3.3	437
48	Phenologically explicit models for studying plant–pollinator interactions under climate change. Theoretical Ecology, 2014, 7, 289-297.	0.4	23
49	Field Germination and Survival of Experimentally Introduced Metal Hyperaccumulator Noccaea caerulescens (Brassicaceae) Across a Soil Metal Gradient. American Midland Naturalist, 2014, 171, 229-245.	0.2	2
50	IPBES: global collaboration on biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 2014, 12, 371-371.	1.9	8
51	Nectar thieves influence reproductive fitness by altering behaviour of nectar robbers and legitimate pollinators in <i><scp>C</scp>orydalis ambigua</i> (<scp>F</scp> umariaceae). Journal of Ecology, 2014, 102, 229-237.	1.9	39
52	Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Global Change Biology, 2013, 19, 2348-2359.	4.2	100
53	Pollinators, Role of. , 2013, , 140-146.		3
54	Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa. American Journal of Botany, 2013, 100, 1381-1397.	0.8	54

#	Article	IF	CITATIONS
55	Nonlinear flowering responses to climate: are species approaching their limits of phenological change?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120489.	1.8	125
56	Longâ€ŧerm trends mask variation in the direction and magnitude of shortâ€ŧerm phenological shifts. American Journal of Botany, 2013, 100, 1398-1406.	0.8	50
57	Effects of climate change on mastâ€flowering cues in a clonal montane herb, <i>Veratrum tenuipetalum</i> (Melanthiaceae). American Journal of Botany, 2013, 100, 519-525.	0.8	21
58	Phenology at High Latitudes. , 2013, , 225-247.		23
59	Phenology at High Altitudes. , 2013, , 249-272.		33
60	Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3843-3852.	1.2	393
61	Asynchronous changes in phenology of migrating Broadâ€ŧailed Hummingbirds and their earlyâ€season nectar resources. Ecology, 2012, 93, 1987-1993.	1.5	149
62	Animal Behavior and the Microbiome. Science, 2012, 338, 198-199.	6.0	400
63	Local Geographic Distributions of Bumble Bees Near Crested Butte, Colorado: Competition and Community Structure Revisited. Environmental Entomology, 2012, 41, 1332-1349.	0.7	58
64	Forecasting phenology: from species variability to community patterns. Ecology Letters, 2012, 15, 545-553.	3.0	182
65	A single climate driver has direct and indirect effects on insect population dynamics. Ecology Letters, 2012, 15, 502-508.	3.0	141
66	Conservation of Plant–Pollinator Mutualisms. Contemporary Topics in Entomology Series, 2011, , 237-240.	0.3	0
67	The effects of dataset length and mast seeding on the demography ofFrasera speciosa, a long-lived monocarpic plant. Ecosphere, 2011, 2, art126.	1.0	8
68	Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. Journal of Ecology, 2011, 99, 905-913.	1.9	118
69	Activity and abundance of bumble bees near Crested Butte, Colorado: diel, seasonal, and elevation effects. Ecological Entomology, 2011, 36, 511-521.	1.1	41
70	Minutes of the ESA Governing Board, 17-18 May, 2010 Washington, DC. Bulletin of the Ecological Society of America, 2010, 91, 382-393.	0.2	0
71	Evolution of Information Management in a Graduate Seminar. Bulletin of the Ecological Society of America, 2010, 91, 361-362.	0.2	0
72	Mosquitoes: more likely nectar thieves than pollinators. Nature, 2010, 467, 27-27.	13.7	9

#	Article	lF	CITATIONS
73	Stimulus funds are being well spent. Nature, 2010, 467, 400-400.	13.7	0
74	The effects of phenological mismatches on demography. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3177-3186.	1.8	501
75	Changes in snowmelt date and summer precipitation affect the flowering phenology of <i>Erythronium grandiflorum</i> (glacier lily; Liliaceae). American Journal of Botany, 2010, 97, 1431-1437.	0.8	92
76	Flowering phenology in subalpine meadows: Does climate variation influence community coâ€flowering patterns?. Ecology, 2010, 91, 431-440.	1.5	121
77	Minutes of the ESA Governing Board, 17–18 November, 2009 Washington, DC. Bulletin of the Ecological Society of America, 2010, 91, 284-293.	0.2	0
78	The Effects of Climate Change on the Phenological Interactions of Plants and Pollinators. Nature Precedings, 2009, , .	0.1	2
79	Variation in the impact of climate change on flowering phenology and abundance: An examination of two pairs of closely related wildflower species. American Journal of Botany, 2009, 96, 1821-1829.	0.8	92
80	Minutes of the 2–3 August 2008 ESA Governing Board. Bulletin of the Ecological Society of America, 2009, 90, 12-22.	0.2	0
81	Minutes of the ESA Governing Board, 1–2 August 2009, Albuquerque, New Mexico. Bulletin of the Ecological Society of America, 2009, 90, 346-354.	0.2	0
82	Minutes of the 3 August 2008 ESA Council Meeting. Bulletin of the Ecological Society of America, 2009, 90, 23-26.	0.2	0
83	Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 2009, 15, 2335-2359.	4.2	871
84	Minutes of the 8 August 2008 ESA Governing Board. Bulletin of the Ecological Society of America, 2009, 90, 27-29.	0.2	0
85	Minutes of the ESA Governing Board 7 August 2009, Albuquerque, New Mexico. Bulletin of the Ecological Society of America, 2009, 90, 357-359.	0.2	0
86	Minutes of the ESA Governing Board 21–22 May 2009, Washington, D.C. Bulletin of the Ecological Society of America, 2009, 90, 336-345.	0.2	0
87	18–19 November 2008 Washington, D.C. Bulletin of the Ecological Society of America, 2009, 90, 235-242.	0.2	0
88	The Emergence of an Endangered Species: Evolution and Phylogeny of the Trachypithecus geei of Bhutan. International Journal of Primatology, 2008, 29, 565-582.	0.9	14
89	How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. Journal of Ecology, 2008, 96, 1289-1296.	1.9	217
90	EFFECTS OF CLIMATE CHANGE ON PHENOLOGY, FROST DAMAGE, AND FLORAL ABUNDANCE OF MONTANE WILDFLOWERS. Ecology, 2008, 89, 353-362.	1.5	876

#	Article	IF	CITATIONS
91	Phenology: response, driver, and integrator1. Ecology, 2008, 89, 319-320.	1.5	23
92	Minutes of the ESA Council 5 August 2007 San Jose, California. Bulletin of the Ecological Society of America, 2008, 89, 109-112.	0.2	0
93	Minutes of the ESA Governing Board 10 August 2007 San Jose, California. Bulletin of the Ecological Society of America, 2008, 89, 113-114.	0.2	0
94	Historical Records Committee. Bulletin of the Ecological Society of America, 2008, 89, 348-349.	0.2	0
95	Minutes of the ESA Governing Board 6–7 November 2007 Washington, D.C. Bulletin of the Ecological Society of America, 2008, 89, 115-122.	0.2	0
96	Minutes of the 2008 Governing Board. Bulletin of the Ecological Society of America, 2008, 89, 293-303.	0.2	0
97	The value of bees. Biological Conservation, 2007, 140, 198-199.	1.9	6
98	Pollinators, Role of. , 2007, , 1-9.		1
99	Minutes of the ESA Governing Board. Bulletin of the Ecological Society of America, 2007, 88, 128-135.	0.2	0
100	Reproductive and physiological responses to simulated climate warming for four subalpine species. New Phytologist, 2007, 173, 121-134.	3.5	46
101	Environmentally "Taken" by the Supreme Court. Frontiers in Ecology and the Environment, 2005, 3, 471.	1.9	0
102	A phenological mid-domain effect in flowering diversity. Oecologia, 2005, 142, 83-89.	0.9	36
103	Minutes of the ESA Governing Board 19–20 May 2005 Washington, D.C. Bulletin of the Ecological Society of America, 2005, 86, 216-222.	0.2	0
104	Minutes of the ESA Governing Board 6 August 2004 Portland, Oregon. Bulletin of the Ecological Society of America, 2005, 86, 18-19.	0.2	0
105	Implementing a U.S. National Phenology Network. Eos, 2005, 86, 539.	0.1	51
106	Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment. Global Change Biology, 2003, 9, 885-894.	4.2	93
107	A Case Study of the Program in Sustainable Development and Conservation Biology at the University of Maryland. Conservation Biology, 2003, 17, 1204-1208.	2.4	2
108	A New Subspecies of Golden Langur <i>(Trachypithecus geei)</i> from Bhutan. Folia Primatologica, 2003, 74, 104-108.	0.3	11

#	Article	IF	CITATIONS
109	Environmental influences on the phenology and abundance of flowering by <i>Androsace septentrionalis</i> (Primulaceae). American Journal of Botany, 2003, 90, 905-910.	0.8	89
110	High Latitude Climates. Tasks for Vegetation Science, 2003, , 175-194.	0.6	18
111	High Altitude Climates. Tasks for Vegetation Science, 2003, , 195-214.	0.6	35
112	Considering Interactions: Incorporating Biotic Interactions into Viability Assessment. Ecological Studies, 2003, , 267-287.	0.4	1
113	Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change. Oecologia, 2002, 130, 543-550.	0.9	159
114	Flies and flowers: taxonomic diversity of anthophiles and pollinators. Canadian Entomologist, 2001, 133, 439-465.	0.4	325
115	Creating Academically and Practically Trained Graduate Students. Conservation Biology, 2000, 14, 595-596.	2.4	9
116	The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters, 2000, 3, 457-463.	3.0	317
117	Climate change is affecting altitudinal migrants and hibernating species. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1630-1633.	3.3	517
118	ARE NECTAR ROBBERS CHEATERS OR MUTUALISTS?. Ecology, 2000, 81, 2651-2661.	1.5	273
119	ARE NECTAR ROBBERS CHEATERS OR MUTUALISTS?. , 2000, 81, 2651.		25
120	ENDANGERED MUTUALISMS: The Conservation of Plant-Pollinator Interactions. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 83-112.	6.7	1,327
121	Biota: The Biodiversity Database Manager Ecology, 1997, 78, 2641.	1.5	15
122	Pollinators, Flowering Plants, and Conservation Biology. BioScience, 1997, 47, 297-307.	2.2	277
123	On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie, 1995, 26, 197-211.	0.9	80
124	A <scp>model and lexicon for pollen fate</scp> . American Journal of Botany, 1994, 81, 1517-1530.	0.8	84
125	Fly pollination of <i>Linum lewish</i> (Linaceae). American Journal of Botany, 1994, 81, 1091-1095.	0.8	59
126	Fly Pollination of Linum lewisii (Linaceae). American Journal of Botany, 1994, 81, 1091.	0.8	43

#	Article	IF	CITATIONS
127	A Model and Lexicon for Pollen Fate. American Journal of Botany, 1994, 81, 1517.	0.8	66
128	EFFECTS OF SNOWPACK ON TIMING AND ABUNDANCE OF FLOWERING IN DELPHINIUM NELSONII (RANUNCULACEAE): IMPLICATIONS FOR CLIMATE CHANGE. American Journal of Botany, 1991, 78, 997-1001.	0.8	102
129	Effects of Snowpack on Timing and Abundance of Flowering in Delphinium nelsonii (Ranunculaceae): Implications for Climate Change. American Journal of Botany, 1991, 78, 997.	0.8	54
130	The Effect of Floral Abundance on Feeder Censuses of Hummingbird Populations. Condor, 1991, 93, 279-285.	0.7	25
131	Pollination biology in the Snowy Mountains of Australia: Comparisons with montane Colorado, USA. Austral Ecology, 1988, 13, 191-205.	0.7	131
132	Spatial Pattern Analysis of Seed Banks: An Improved Method and Optimized Sampling. Ecology, 1988, 69, 497-507.	1.5	200
133	LONGâ€TERM PREFORMATION OF LEAVES AND INFLORESCENCES BY A LONGâ€LIVED PERENNIAL MONOCARP, FRASERA SPECIOSA (GENTIANACEAE). American Journal of Botany, 1986, 73, 1535-1540.	0.8	15
134	A demographic analysis of mortality caused by the pine wood nematode (Bursaphelenchus xylophilus) and pine sawyer beetles (Monochamus alternatus) in pine forests in the Seto Inland Sea-side, Japan. Oecologia, 1986, 68, 321-326.	0.9	0
135	Long-Term Preformation of Leaves and Inflorescences by a Long-Lived Perennial Monocarp, Frasera speciosa (Gentianaceae). American Journal of Botany, 1986, 73, 1535.	0.8	8
136	Synchrony and Periodicity of Flowering in Frasera Speciosa (Gentianaceae). Ecology, 1985, 66, 521-527.	1.5	36
137	Responses of Honey Bees (Apis Mellifera) to Amino Acid Solutions Mimicking Floral Nectars. Ecology, 1984, 65, 618-625.	1.5	108
138	Site-fidelity, longevity, and population dynamics of broad-tailed hummingbirds: a ten year study. Oecologia, 1983, 56, 359-364.	0.9	30
139	Roles of the wing whistle in the territorial behaviour of male broad-tailed hummingbirds (Selasphorus platycercus). Animal Behaviour, 1983, 31, 689-700.	0.8	54
140	The Consequences of Herbivory: A Mixed Blessing for Jurinea mollis (Asteraceae). Oikos, 1982, 39, 269.	1.2	93
141	The Boreal Ecosystem. Physiological Ecology.James A. Larsen. Quarterly Review of Biology, 1982, 57, 79-80.	0.0	0
142	Non-Random Orientation of Gila Woodpecker Nest Entrances in Saguaro Cacti. Condor, 1981, 83, 88.	0.7	59
143	The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia, 1980, 45, 197-201.	0.9	231
144	Variation in generation time in Frasera speciosa (Gentianaceae), a long-lived perennial monocarp. Oecologia, 1980, 47, 171-174.	0.9	23

#	Article	IF	CITATIONS
145	THE AMINO ACIDS OF EXTRAFLORAL NECTAR FROM HELIANTHELLA QUINQUENERVIS (ASTERACEAE). American Journal of Botany, 1980, 67, 1394-1396.	0.8	15
146	The Amino Acids of Extrafloral Nectar from Helianthella quinquenervis (Asteraceae). American Journal of Botany, 1980, 67, 1394.	0.8	8
147	The Effects of Nonsugar Nectar Constituents on Estimates of Nectar Energy Content. Ecology, 1980, 61, 992-996.	1.5	69
148	The Terminology of Floral Larceny. Ecology, 1980, 61, 1251-1253.	1.5	386
149	A Temperate Region Plant-Ant-Seed Predator System: Consequences of Extra Floral Nectar Secretion by Helianthella Quinquenervis. Ecology, 1979, 60, 1-7.	1.5	147
150	Resource Partitioning in Bumblebees: Experimental Studies of Foraging Behavior. Ecology, 1978, 59, 672-678.	1.5	295
151	Nonrandom Orientation of Entrance Holes to Woodpecker Nests in Aspen Trees. Condor, 1976, 78, 101-102.	0.7	53
152	Why Don't More Hummingbird-Pollinated Flowers Have Dark-Colored Pollen?. American Naturalist, 1975, 109, 377-378.	1.0	6
153	Flies and Flowers II: Floral Attractants and Rewards. Journal of Pollination Ecology, 0, 12, 63-94.	0.5	109
154	Flies and Flowers III: Ecology of foraging and pollination. Journal of Pollination Ecology, 0, 16, 115-133.	0.5	129