David Vetrie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8174626/publications.pdf

Version: 2024-02-01

		172457	330143
37	11,051	29	37
papers	citations	h-index	g-index
20	20	20	1.022
38	38	38	16932
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ULK1 inhibition promotes oxidative stress–induced differentiation and sensitizes leukemic stem cells to targeted therapy. Science Translational Medicine, 2021, 13, eabd5016.	12.4	26
2	The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nature Reviews Cancer, 2020, 20, 158-173.	28.4	181
3	Epigenetic Reprogramming and Emerging Epigenetic Therapies in CML. Frontiers in Cell and Developmental Biology, 2019, 7, 136.	3.7	16
4	Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Seminars in Cancer Biology, 2018, 51, 180-197.	9.6	53
5	The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood, 2017, 129, 1595-1606.	1.4	240
6	CML cells actively evade host immune surveillance through cytokine-mediated downregulation of MHC-II expression. Blood, 2017, 129, 199-208.	1.4	58
7	Epigenetic Reprogramming Sensitizes CML Stem Cells to Combined EZH2 and Tyrosine Kinase Inhibition. Cancer Discovery, 2016, 6, 1248-1257.	9.4	120
8	Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature, 2016, 534, 341-346.	27.8	204
9	Repositioned to kill stem cells. Nature, 2015, 525, 328-329.	27.8	4
10	Complex Exon-Intron Marking by Histone Modifications Is Not Determined Solely by Nucleosome Distribution. PLoS ONE, 2010, 5, e12339.	2.5	64
11	Genomic Approaches Uncover Increasing Complexities in the Regulatory Landscape at the Human SCL (TAL1) Locus. PLoS ONE, 2010, 5, e9059.	2.5	15
12	Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level. Genome Research, 2009, 19, 994-1005.	5.5	73
13	Autosomal-Dominant Microtia Linked to Five Tandem Copies of a Copy-Number-Variable Region at Chromosome 4p16. American Journal of Human Genetics, 2008, 82, 181-187.	6.2	42
14	The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Research, 2007, 17, 691-707.	5.5	353
15	Requirement of <i>bic/microRNA-155</i> for Normal Immune Function. Science, 2007, 316, 608-611.	12.6	1,786
16	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816.	27.8	4, 709
17	Identifying gene regulatory elements by genomic microarray mapping of DNasel hypersensitive sites. Genome Research, 2006, 16, 1310-1319.	5.5	34
18	Identification of genetic aberrations on chromosome 22 outside theNF2locus in schwannomatosis and neurofibromatosis type 2. Human Mutation, 2005, 26, 540-549.	2.5	29

#	Article	IF	CITATIONS
19	Binding sites for metabolic disease related transcription factors inferred at base pair resolution by chromatin immunoprecipitation and genomic microarrays. Human Molecular Genetics, 2005, 14, 3435-3447.	2.9	71
20	Exon Array CGH: Detection of Copy-Number Changes at the Resolution of Individual Exons in the Human Genome. American Journal of Human Genetics, 2005, 76, 750-762.	6.2	132
21	Applications of genomic microarrays to explore human chromosome structure and function. Human Molecular Genetics, 2004, 13, R297-R302.	2.9	19
22	Gene expression profiling in the myelodysplastic syndromes using cDNA microarray technology. British Journal of Haematology, 2004, 125, 576-583.	2.5	75
23	Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Molecular and Biochemical Parasitology, 2004, 136, 87-100.	1.1	76
24	DNA microarrays for comparative genomic hybridization based on DOPâ€PCR amplification of BAC and PAC clones. Genes Chromosomes and Cancer, 2003, 36, 361-374.	2.8	439
25	Gene expression profiling in polycythemia vera using cDNA microarray technology. Cancer Research, 2003, 63, 3940-4.	0.9	42
26	From genomes to vaccines:Leishmaniaas a model. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 5-11.	4.0	49
27	Detection of mutations in COL4A5 in patients with Alport Syndrome. Human Mutation, 1999, 13, 124-132.	2.5	57
28	Pelizaeus-Merzbacher Disease: Identification of Xq22 Proteolipid-Protein Duplications and Characterization of Breakpoints by Interphase FISH. American Journal of Human Genetics, 1998, 63, 207-217.	6.2	108
29	A Complete YAC Contig and Cosmid Interval Map Covering the Entirety of Human Xq21.33 to Xq22.3 from DXS3 to DXS287. Genomics, 1997, 43, 171-182.	2.9	17
30	A novel X–linked gene, DDP, shows mutations in families with deafness (DFN–1), dystonia, mental deficiency and blindness. Nature Genetics, 1996, 14, 177-180.	21.4	256
31	Identification of Btk mutations in 20 unrelated patients with X-linked agammaglobulinaemia (XLA). Human Molecular Genetics, 1995, 4, 693-700.	2.9	59
32	Identification of deletions in thebtk gene allows unambiguous assessment of carrier status in families with X-linked agammaglobulinaemia. Human Genetics, 1994, 94, 77-79.	3.8	8
33	A 6.5-Mb Yeast Artificial Chromosome Contig Incorporating 33 DNA Markers on the Human X Chromosome at Xq22. Genomics, 1994, 19, 42-47.	2.9	30
34	Isolation of Cosmid and cDNA Clones in the Region Surrounding the BTK Gene at Xq21.3-q22. Genomics, 1994, 21, 517-524.	2.9	41
35	The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature, 1993, 361, 226-233.	27.8	1,400
36	Construction of a 5.2-Megabase Physical Map of the Human X Chromosome at Xq22 Using Pulsed-Field Gel Electrophoresis and Yeast Artificial Chromosomes. Genomics, 1993, 15, 631-642.	2.9	25

#	Article	IF	CITATIONS
37	Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors. Nucleic Acids Research, 1990, 18, 1421-1428.	14.5	140