## Dario Papale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81745/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437, 529-533.                                                                                                         | 27.8 | 3,245     |
| 2  | On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424-1439.                                                       | 9.5  | 2,778     |
| 3  | Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.                                                                                                   | 12.6 | 2,056     |
| 4  | Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467, 951-954.                                                                                                    | 27.8 | 1,771     |
| 5  | Climate extremes and the carbon cycle. Nature, 2013, 500, 287-295.                                                                                                                                                        | 27.8 | 1,357     |
| 6  | Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3, 315-322.                                                                                                             | 12.9 | 1,254     |
| 7  | Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 2006, 3, 571-583.                                             | 3.3  | 1,206     |
| 8  | Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived<br>from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research,<br>2011, 116, . | 3.3  | 933       |
| 9  | CO <sub>2</sub> balance of boreal, temperate, and tropical forests derived from a global database.<br>Global Change Biology, 2007, 13, 2509-2537.                                                                         | 9.5  | 863       |
| 10 | Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 2010, 16, 187-208.                            | 9.5  | 752       |
| 11 | Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes.<br>Agricultural and Forest Meteorology, 2007, 147, 209-232.                                                                     | 4.8  | 744       |
| 12 | The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.                                                                                                      | 5.3  | 646       |
| 13 | Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 2007, 143, 123-145.                                            | 4.8  | 509       |
| 14 | Reduction of ecosystem productivity and respiration during the European summer 2003 climate<br>anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 2007, 13,<br>634-651.           | 9.5  | 486       |
| 15 | Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 2017, 541, 516-520.                                                                                                           | 27.8 | 480       |
| 16 | A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology, 2003, 9, 525-535.                                                               | 9.5  | 465       |
| 17 | Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms.<br>Biogeosciences, 2016, 13, 4291-4313.                                                                               | 3.3  | 447       |
| 18 | Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics, 2015, 53, 785-818.                                                                                                      | 23.0 | 432       |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agricultural and Forest Meteorology, 2013, 171-172, 137-152.                            | 4.8  | 424       |
| 20 | Temporal and amongâ€site variability of inherent water use efficiency at the ecosystem level. Global<br>Biogeochemical Cycles, 2009, 23, .                                                                         | 4.9  | 422       |
| 21 | Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 2014, 4, 471-476.                                                                                               | 18.8 | 383       |
| 22 | The FLUXCOM ensemble of global land-atmosphere energy fluxes. Scientific Data, 2019, 6, 74.                                                                                                                        | 5.3  | 337       |
| 23 | Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 2020, 17, 1343-1365.                                                                  | 3.3  | 323       |
| 24 | Fertile forests produce biomass more efficiently. Ecology Letters, 2012, 15, 520-526.                                                                                                                              | 6.4  | 273       |
| 25 | Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resources Research, 2012, 48, .                               | 4.2  | 254       |
| 26 | Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology, 2008, 148, 821-838.                                                                             | 4.8  | 248       |
| 27 | The European carbon balance. Part 3: forests. Global Change Biology, 2010, 16, 1429-1450.                                                                                                                          | 9.5  | 247       |
| 28 | Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters, 2007, 34, .                                                                  | 4.0  | 223       |
| 29 | Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Global Ecology and Biogeography, 2010, 19, 253-267.                                   | 5.8  | 201       |
| 30 | Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 2008, 5, 433-450.                         | 3.3  | 192       |
| 31 | A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences, 2014, 11, 381-407.                                                                                        | 3.3  | 162       |
| 32 | Aboveâ€ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddyâ€covariance sites. New Phytologist, 2014, 201, 1289-1303.                               | 7.3  | 152       |
| 33 | Discrimination of tropical forest types, dominant species, and mapping of functional guilds by<br>hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, 2016, 176,<br>163-176. | 11.0 | 145       |
| 34 | Remote estimation of carbon dioxide uptake by a Mediterranean forest. Global Change Biology, 2008,<br>14, 2860-2867.                                                                                               | 9.5  | 139       |
| 35 | Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology, 2012, 165, 53-63.                               | 4.8  | 138       |
| 36 | Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models. Biogeosciences, 2008, 5, 561-583.                                                                            | 3.3  | 136       |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals.<br>Agricultural and Forest Meteorology, 2008, 148, 38-50.                                     | 4.8  | 128       |
| 38 | Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Global Change Biology, 2011, 17, 390-409.                                 | 9.5  | 128       |
| 39 | Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies.<br>Agricultural and Forest Meteorology, 2013, 171-172, 31-45.                             | 4.8  | 126       |
| 40 | Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochemical Cycles, 2008, 22, .                    | 4.9  | 113       |
| 41 | Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5923-5946. | 3.3  | 113       |
| 42 | Influences of observation errors in eddy flux data on inverse model parameter estimation.<br>Biogeosciences, 2008, 5, 1311-1324.                                                               | 3.3  | 112       |
| 43 | Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2005, 2, 317-321.                                                     | 3.3  | 110       |
| 44 | On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands:<br>a flux perspective. Ecological Applications, 2010, 20, 1583-1597.                         | 3.8  | 109       |
| 45 | Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature<br>Geoscience, 2015, 8, 843-846.                                                             | 12.9 | 109       |
| 46 | Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters, 2007, 34, .                                                                                            | 4.0  | 104       |
| 47 | Uncertainty analysis of gross primary production upscaling using Random Forests, remote sensing and eddy covariance data. Remote Sensing of Environment, 2015, 168, 360-373.                   | 11.0 | 103       |
| 48 | Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis. Earth System Science Data, 2015, 7, 157-171.                                         | 9.9  | 103       |
| 49 | Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data. Journal of Applied Remote Sensing, 2018, 12, 1.               | 1.3  | 101       |
| 50 | The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.                                                                                                            | 27.8 | 99        |
| 51 | Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems. Remote Sensing of Environment, 2009, 113, 657-667.                           | 11.0 | 98        |
| 52 | Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences, 2015, 12, 5995-6015.                                                   | 3.3  | 98        |
| 53 | Widespread inhibition of daytime ecosystem respiration. Nature Ecology and Evolution, 2019, 3, 407-415.                                                                                        | 7.8  | 98        |
| 54 | Global distribution of groundwaterâ€vegetation spatial covariation. Geophysical Research Letters, 2017,<br>44, 4134-4142.                                                                      | 4.0  | 91        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 2016, 7, 13717.                                                                 | 12.8 | 90        |
| 56 | Diagnostic assessment of European gross primary production. Global Change Biology, 2008, 14, 2349-2364.                                                                                                                  | 9.5  | 86        |
| 57 | FLUXNET-CH <sub>4</sub> : a global, multi-ecosystem dataset and analysis of<br>methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.                                             | 9.9  | 79        |
| 58 | Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology, 2010, 16, 2813-2829.                                      | 9.5  | 77        |
| 59 | Matching the phenology of Net Ecosystem Exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations. Remote Sensing of Environment, 2016, 174, 290-300.                                        | 11.0 | 76        |
| 60 | Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global<br>Change Biology, 2007, 13, 2110-2127.                                                                            | 9.5  | 69        |
| 61 | Operational monitoring of daily evapotranspiration by the combination of MODIS NDVI and ground meteorological data: Application and evaluation in Central Italy. Remote Sensing of Environment, 2014, 152, 279-290.      | 11.0 | 65        |
| 62 | Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with<br>artificial neural networks. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1941-1957.                 | 3.0  | 65        |
| 63 | Remote sensing of ecosystem light use efficiency with MODIS-based PRI. Biogeosciences, 2011, 8, 189-202.                                                                                                                 | 3.3  | 64        |
| 64 | Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports, 2017, 7, 9632.                                                                                                                      | 3.3  | 62        |
| 65 | Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. International Agrophysics, 2018, 32, 495-515.                                                                      | 1.7  | 62        |
| 66 | Toward a consistency cross heck of eddy covariance flux–based and biometric estimates of<br>ecosystem carbon balance. Global Biogeochemical Cycles, 2009, 23, .                                                          | 4.9  | 61        |
| 67 | ICOS eddy covariance flux-station site setup: a review. International Agrophysics, 2018, 32, 471-494.                                                                                                                    | 1.7  | 59        |
| 68 | Reviews and syntheses: An empirical spatiotemporal description of the global surface–atmosphere carbon fluxes: opportunities and data limitations. Biogeosciences, 2017, 14, 3685-3703.                                  | 3.3  | 58        |
| 69 | Inferring plant functional diversity from space: the potential of Sentinel-2. Remote Sensing of Environment, 2019, 233, 111368.                                                                                          | 11.0 | 56        |
| 70 | The European land and inland water CO <sub>2</sub> , CO,<br>CH <sub>4</sub> and N <sub>2</sub> O balance<br>between 2001 and 2005. Biogeosciences, 2012, 9, 3357-3380.                                                   | 3.3  | 53        |
| 71 | Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with<br>Lidar-Derived Estimates. Remote Sensing, 2017, 9, 18.                                                                        | 4.0  | 50        |
| 72 | Wind as a main driver of the net ecosystem carbon balance of a semiarid <scp>M</scp> editerranean<br>steppe in the <scp>S</scp> outh <scp>E</scp> ast of <scp>S</scp> pain. Global Change Biology, 2012, 18,<br>539-554. | 9.5  | 49        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A New Data Set to Keep a Sharper Eye on Land-Air Exchanges. Eos, 2017, , .                                                                                                                                     | 0.1  | 46        |
| 74 | On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning.<br>Biogeosciences, 2012, 9, 5243-5259.                                                                          | 3.3  | 45        |
| 75 | Net CO2 exchange rates in three different successional stages of the "Dark Taiga" of central Siberia.<br>Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 642-654.                               | 1.6  | 44        |
| 76 | The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society, 2022, 103, E855-E872.                                                                                     | 3.3  | 44        |
| 77 | Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest. Biogeosciences, 2011, 8, 2481-2492.                                                             | 3.3  | 43        |
| 78 | Simulation of grassland productivity by the combination of ground and satellite data. Agriculture,<br>Ecosystems and Environment, 2013, 165, 163-172.                                                          | 5.3  | 43        |
| 79 | Characterizing ecosystem-atmosphere interactions from short to interannual time scales.<br>Biogeosciences, 2007, 4, 743-758.                                                                                   | 3.3  | 42        |
| 80 | Drought Influences the Accuracy of Simulated Ecosystem Fluxes: A Model-Data Meta-analysis for<br>Mediterranean Oak Woodlands. Ecosystems, 2013, 16, 749-764.                                                   | 3.4  | 42        |
| 81 | Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks.<br>Global Change Biology, 2020, 26, 5235-5253.                                                               | 9.5  | 42        |
| 82 | Experimental validation of footprint models for eddy covariance CO2 flux measurements above<br>grassland by means of natural and artificial tracers. Agricultural and Forest Meteorology, 2017, 242,<br>75-84. | 4.8  | 39        |
| 83 | Biometric and eddy covariance-based assessment of decadal carbon sequestration of a temperate<br>Scots pine forest. Agricultural and Forest Meteorology, 2013, 174-175, 135-143.                               | 4.8  | 38        |
| 84 | Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 371-379.             | 2.8  | 36        |
| 85 | Detecting impacts of extreme events with ecological inÂsitu monitoring networks. Biogeosciences, 2017, 14, 4255-4277.                                                                                          | 3.3  | 35        |
| 86 | Ancillary vegetation measurements at ICOS ecosystem stations. International Agrophysics, 2018, 32, 645-664.                                                                                                    | 1.7  | 35        |
| 87 | Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature<br>Communications, 2021, 12, 2266.                                                                          | 12.8 | 34        |
| 88 | Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.            | 4.8  | 33        |
| 89 | Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach.<br>Biogeosciences, 2007, 4, 581-595.                                                                        | 3.3  | 32        |
| 90 | Assessing and improving the representativeness of monitoring networks: The European flux tower network example. Journal of Geophysical Research, 2011, 116, .                                                  | 3.3  | 32        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Nighttime Flux Correction. , 2012, , 133-157.                                                                                                                                                                                                           |     | 31        |
| 92  | Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network. Biogeosciences, 2014, 11, 2661-2678.                                                                    | 3.3 | 30        |
| 93  | Impact of CO 2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance. Agricultural and Forest Meteorology, 2018, 248, 228-239.                                                                                        | 4.8 | 30        |
| 94  | Tree height in tropical forest as measured by different ground, proximal, and remote sensing<br>instruments, and impacts on above ground biomass estimates. International Journal of Applied Earth<br>Observation and Geoinformation, 2019, 82, 101899. | 2.8 | 30        |
| 95  | Predicting changes in soil organic carbon in mediterranean and alpine forests during the Kyoto<br>Protocol commitment periods using the CENTURY model. Soil Use and Management, 2010, 26, 475-484.                                                      | 4.9 | 29        |
| 96  | Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice.<br>Biogeosciences, 2016, 13, 95-113.                                                                                                                          | 3.3 | 29        |
| 97  | Modeling Ambitions Outpace Observations of Forest Carbon Allocation. Trends in Plant Science, 2021, 26, 210-219.                                                                                                                                        | 8.8 | 29        |
| 98  | Availability, accessibility, quality and comparability of monitoring data for European forests for use in air pollution and climate change science. IForest, 2011, 4, 162-166.                                                                          | 1.4 | 28        |
| 99  | Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula. Biogeosciences, 2010, 7, 3707-3729.                                                                                               | 3.3 | 27        |
| 100 | The role of photo- and thermal degradation for CO <sub>2</sub> and CO<br>fluxes in an arid ecosystem. Biogeosciences, 2015, 12, 4161-4174.                                                                                                              | 3.3 | 26        |
| 101 | Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data.<br>Journal of Geophysical Research G: Biogeosciences, 2016, 121, 266-279.                                                                                 | 3.0 | 26        |
| 102 | Eddy-covariance flux errors due to biases in gas concentration measurements: origins, quantification and correction. Biogeosciences, 2014, 11, 1037-1051.                                                                                               | 3.3 | 24        |
| 103 | Observational Data Patterns for Time Series Data Quality Assessment. , 2014, , .                                                                                                                                                                        |     | 24        |
| 104 | Towards a transnational system of supersites for forest monitoring and research in Europe - an overview on present state and future recommendations. IForest, 2011, 4, 167-171.                                                                         | 1.4 | 23        |
| 105 | Satellite open data to monitor forest damage caused by extreme climate-induced events: a case study<br>of the Vaia storm in Northern Italy. Forestry, 2021, 94, 407-416.                                                                                | 2.3 | 23        |
| 106 | The role of trace gas flux networks in the biogeosciences. Eos, 2012, 93, 217-218.                                                                                                                                                                      | 0.1 | 22        |
| 107 | On the relationship between ecosystem-scale hyperspectral reflectance and<br>CO <sub>2</sub> exchange in European mountain grasslands.<br>Biogeosciences, 2015, 12, 3089-3108.                                                                          | 3.3 | 21        |
| 108 | Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 151-161.         | 2.8 | 20        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Ideas and perspectives: enhancing the impact of the FLUXNET network of eddy covariance sites.<br>Biogeosciences, 2020, 17, 5587-5598.                                                               | 3.3 | 19        |
| 110 | State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecological Modelling, 2012, 246, 11-25.                             | 2.5 | 18        |
| 111 | Correction of a 1 km daily rainfall dataset for modelling forest ecosystem processes in Italy.<br>Meteorological Applications, 2016, 23, 294-303.                                                   | 2.1 | 18        |
| 112 | The ecosystem carbon sink implications of mountain forest expansion into abandoned grazing land:<br>The role of subsoil and climatic factors. Science of the Total Environment, 2019, 672, 106-120. | 8.0 | 18        |
| 113 | Database Maintenance, Data Sharing Policy, Collaboration. , 2012, , 399-424.                                                                                                                        |     | 17        |
| 114 | Data Gap Filling. , 2012, , 159-172.                                                                                                                                                                |     | 16        |
| 115 | A robust data cleaning procedure for eddy covariance flux measurements. Biogeosciences, 2020, 17, 1367-1391.                                                                                        | 3.3 | 15        |
| 116 | Monitoring tropical forests under a functional perspective with satelliteâ€based vegetation optical depth. Global Change Biology, 2020, 26, 3402-3416.                                              | 9.5 | 15        |
| 117 | Geologic carbon sources may confound ecosystem carbon balance estimates: Evidence from a semiarid steppe in the southeast of Spain. Journal of Geophysical Research, 2012, 117, .                   | 3.3 | 14        |
| 118 | Assimilating phenology datasets automatically across ICOS ecosystem stations. International Agrophysics, 2018, 32, 677-687.                                                                         | 1.7 | 14        |
| 119 | Partitioning the net ecosystem carbon balance of a semiarid steppe into biological and geological components. Biogeochemistry, 2014, 118, 83-101.                                                   | 3.5 | 12        |
| 120 | Diel variation in isotopic composition of soil respiratory CO 2 fluxes: The role of non-steady state conditions. Agricultural and Forest Meteorology, 2017, 234-235, 95-105.                        | 4.8 | 11        |
| 121 | A comparison of different methods for assessing leaf area index in four canopy types. Central<br>European Forestry Journal, 2019, 65, 67-80.                                                        | 0.8 | 10        |
| 122 | ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications.<br>Sensors, 2008, 8, 3240-3256.                                                                      | 3.8 | 8         |
| 123 | Early mapping of industrial tomato in Central and Southern Italy with Sentinel 2, aerial and RapidEye<br>additional data. Journal of Agricultural Science, 2018, 156, 396-407.                      | 1.3 | 8         |
| 124 | Carbon, Water and Energy Fluxes of Terrestrial Ecosystems in Italy. Environmental Science and Engineering, 2015, , 11-45.                                                                           | 0.2 | 8         |
| 125 | Importance of reporting ancillary site characteristics, and management and disturbance information at ICOS stations. International Agrophysics, 2018, 32, 457-469.                                  | 1.7 | 8         |
| 126 | Effects of the Gill-Solent WindMaster-Pro "w-boost―firmware bug on eddy covariance fluxes and some simple recovery strategies. Agricultural and Forest Meteorology, 2019, 265, 145-151.             | 4.8 | 7         |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | A Multiple Imputation Strategy for Eddy Covariance Data. Journal of Environmental Informatics, 0, , .                                                                                                                                       | 6.0  | 7         |
| 128 | Soil carbon dynamics in a Mediterranean forest during the Kyoto Protocol commitment periods.<br>Regional Environmental Change, 2011, 11, 371-376.                                                                                           | 2.9  | 6         |
| 129 | Species dominance and above ground biomass in the BiaÅ,owieża Forest, Poland, described by airborne<br>hyperspectral and lidar data. International Journal of Applied Earth Observation and Geoinformation,<br>2020, 92, 102178.            | 2.8  | 6         |
| 130 | Correction to "Global patterns of landâ€atmosphere fluxes of carbon dioxide, latent heat, and sensible<br>heat derived from eddy covariance, satellite, and meteorological observationsâ€: Journal of<br>Geophysical Research, 2012, 117, . | 3.3  | 5         |
| 131 | Modelling random uncertainty of eddy covariance flux measurements. Stochastic Environmental<br>Research and Risk Assessment, 2019, 33, 725-746.                                                                                             | 4.0  | 5         |
| 132 | COSMO-SkyMed potential to detect and monitor Mediterranean maquis fires and regrowth: a pilot study in Capo Figari, Sardinia, Italy. IForest, 2018, 11, 389-395.                                                                            | 1.4  | 5         |
| 133 | Net CO <sub>2</sub> exchange rates in three different successional stages of the<br>"Dark Taiga" of central Siberia. Tellus, Series B: Chemical and Physical<br>Meteorology, 2022, 54, 642.                                                 | 1.6  | 4         |
| 134 | Hunting Data Rogues at Scale: Data Quality Control for Observational Data in Research<br>Infrastructures. , 2017, , .                                                                                                                       |      | 4         |
| 135 | Ideas and perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries. Biogeosciences, 2022, 19, 1435-1450.                                                    | 3.3  | 4         |
| 136 | Eddy covariance flux errors due to random and systematic timing errors during data acquisition.<br>Biogeosciences, 2018, 15, 5473-5487.                                                                                                     | 3.3  | 3         |
| 137 | Global nature run data with realistic high-resolution carbon weather for the year of the Paris<br>Agreement. Scientific Data, 2022, 9, 160.                                                                                                 | 5.3  | 3         |
| 138 | Reply to 'Uncertain effects of nutrient availability on global forest carbon balance' and 'Data quality and the role of nutrients in forest carbon-use efficiency'. Nature Climate Change, 2015, 5, 960-961.                                | 18.8 | 2         |
| 139 | Ranking drivers of global carbon and energy fluxes over land. , 2015, , .                                                                                                                                                                   |      | 2         |
| 140 | Radiocarbon-Based Assessment of Heterotrophic Soil Respiration in Two Mediterranean Forests.<br>Ecosystems, 2016, 19, 62-72.                                                                                                                | 3.4  | 2         |
| 141 | SMOS Vegetation Optical Depth and Ecosystem Functional Properties: Exploring Their Relationships in Tropical Forests. , 2018, , .                                                                                                           |      | 1         |
| 142 | Spatial and temporal assessment of biospheric carbon fluxes at a continental scale by neural-network optimization , 2004, , 203-230.                                                                                                        |      | 1         |
| 143 | Airborne remote sensing in precision viticolture: assessment of quality and quantity vineyard<br>production using multispectral imagery: a case study in Velletri, Rome surroundings (central Italy). ,<br>2009, , .                        |      | 0         |
| 144 | Case Study: ENVRI Science Demonstrators with D4Science. Lecture Notes in Computer Science, 2020, ,<br>307-323.                                                                                                                              | 1.3  | 0         |