Mikhail Chebakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8174497/publications.pdf

Version: 2024-02-01

1684188 1372567 33 119 5 10 citations g-index h-index papers 34 34 34 77 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CONTACT INTERACTION OF AN AXISYMMETRIC PUNCH AND A POROELASTIC LAYER FIXED ON AN ELASTIC BASE. Mechanics of Solids, 2022, 57, 508-514.	0.7	О
2	Contact Interaction of an Axisymmetric Stamp and an Elastic Layer Fixed on a Poroelastic Base. Mechanics of Composite Materials, 2021, 56, 769-778.	1.4	5
3	Contact Interaction Between Parabolic Punch and Elastic Strip Bonded to Poroelastic Half-Plane. Springer Proceedings in Materials, 2021, , 321-330.	0.3	3
4	Probalistic-Information Approach to Assessing the Reliability of the Results of the Acoustic-Emission Method of Testing and Diagnostics. Russian Journal of Nondestructive Testing, 2021, 57, 375-382.	0.9	5
5	Analytical Solution of Axisymmetric Contact Problem for a Poroelastic Layer. Mechanics of Solids, 2020, 55, 857-864.	0.7	5
6	Contact Problem for a Cylindrical Waveguide With a Periodic Structure. Mechanics of Solids, 2019, 54, 717-725.	0.7	0
7	Finite Element Stress Analysis of Pipelines with Advanced Composite Repair. Engineering Materials, 2018, , 289-309.	0.6	6
8	Finite-Element Modeling of a Repaired Pipeline Containing Two Volumetric Surface Defects. Engineering Materials, 2018, , 311-320.	0.6	0
9	Analytical Modeling of the Damaged Zone of Pipelines Repaired with Composite Materials Systems. Engineering Materials, 2018, , 369-386.	0.6	O
10	CONTACT PROBLEM FOR A TWO-LAYERED CYLINDER. Vestnik of Don State Technical University, 2018, 18, 265-270.	0.4	0
11	Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve. International Journal of Pressure Vessels and Piping, 2017, 149, 108-119.	2.6	40
12	Stress Assessment for a Pipeline Segment with Volumetric Surface Defects Repaired Using Composite Materials. Springer Proceedings in Physics, 2017, , 361-372.	0.2	1
13	Modeling of Corrosion in Filler Defect in the Repair of Pipes Overlay Composite Bandage. Springer Proceedings in Physics, 2017, , 373-380.	0.2	2
14	MODELLING OF THERMOELASTIC TRANSIENT CONTACT INTERACTION FOR BINARY BEARING TAKING INTO ACCOUNT CONVECTION. Transport Problems, 2017, 11, 73-81.	0.6	0
15	Simulation of a nonstationary contact in a sliding bearing with allowance for frictional heating and convective heat transfer. Journal of Machinery Manufacture and Reliability, 2016, 45, 156-162.	0.5	4
16	Thermo-physical Processes in Boundary Layers of Metal-Polymeric Systems. Springer Proceedings in Physics, 2016, , 527-538.	0.2	1
17	Finite-Element Modeling of a Damaged Pipeline Repaired Using the Wrap of a Composite Material. Mechanics of Composite Materials, 2015, 51, 333-340.	1.4	15
18	The contact problem when there are friction forces in the contact area for a three-component cylindrical base. Prikladnaya Matematika I Mekhanika, 2014, 78, 181-186.	0.4	0

#	Article	IF	CITATIONS
19	Contact problems for a triple-layer strip in the presence of friction forces. Prikladnaya Matematika I Mekhanika, 2012, 76, 552-557.	0.4	2
20	The contact problem for a two-layer spherical base. Prikladnaya Matematika I Mekhanika, 2010, 74, 673-678.	0.4	3
21	To the theory of analysis of a two-layer cylindrical bearing. Mechanics of Solids, 2009, 44, 473-479.	0.7	4
22	The contact problem for a double-layer cylindrical base with account of friction forces. Journal of Friction and Wear, 2008, 29, 477-482.	0.5	1
23	Contact strength of a two-layer covering under friction forces in the contact region. Mechanics of Solids, 2007, 42, 157-165.	0.7	6
24	Asymptotic solution of contact problemsfor a relatively thick elastic layer when there are friction forces in the contact area. Prikladnaya Matematika I Mekhanika, 2005, 69, 296-304.	0.4	5
25	Three-dimensional contact problem for a layer with allowance for friction in an unknown contact area. Doklady Physics, 2002, 47, 238-240.	0.7	0
26	The thermoelasticity of a moving punch when the heat release from friction is taken into account. Prikladnaya Matematika I Mekhanika, 1994, 58, 539-544.	0.4	5
27	Embedding of a punch in the form of an elliptic paraboloid into an elastic spatial wedge. Prikladnaya Matematika I Mekhanika, 1992, 56, 244-252.	0.4	4
28	An efficient technique for solving a class of infinite systems in contact problems in the theory of elasticity. Prikladnaya Matematika I Mekhanika, 1991, 55, 279-282.	0.4	0
29	Planar contact problem for a body of rectangular cross section in a prestressed state. Soviet Applied Mechanics, 1990, 26, 1187-1194.	0.0	0
30	Exact solution of the antiplane contact problem for finite canonical domains. Prikladnaya Matematika I Mekhanika, 1990, 54, 688-691.	0.4	0
31	Certain contact problems of the theory of elasticity for an annular sector and a spherical layer sector. Prikladnaya Matematika I Mekhanika, 1987, 51, 76-82.	0.4	0
32	On the method of homogeneous solutions in mixed problems of the theory of elasticity for a truncated wedge and a ring sector. Prikladnaya Matematika I Mekhanika, 1983, 47, 639-645.	0.4	1
33	On the Reissner-Sagoci problem. Soviet Applied Mechanics, 1973, 9, 1316-1320.	0.0	1