
Bing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8174378/publications.pdf Version: 2024-02-01

RINCLUU

#	Article	IF	CITATIONS
1	OTP970 Is Required for RNA Editing of Chloroplast ndhB Transcripts in Arabidopsis thaliana. Genes, 2022, 13, 139.	2.4	4
2	SQUINT Positively Regulates Resistance to the Pathogen <i>Botrytis cinerea</i> via miR156–SPL9 Module in <i>Arabidopsis</i> . Plant and Cell Physiology, 2022, 63, 1414-1432.	3.1	13
3	The Zygotic Division Regulator ZAR1 Plays a Negative Role in Defense Against Botrytis cinerea in Arabidopsis. Frontiers in Plant Science, 2021, 12, 736560.	3.6	0
4	The juxtamembrane domains of Arabidopsis CERK1, BAK1, and FLS2 play a conserved role in chitinâ€induced signaling. Journal of Integrative Plant Biology, 2020, 62, 556-562.	8.5	18
5	The Iron Deficiency Response Regulators IAA-LEUCINE RESISTANT3 and bHLH104 Possess Different Targets and Have Distinct Effects on Photosynthesis in Arabidopsis. Journal of Plant Biology, 2019, 62, 109-119.	2.1	10
6	BIK1 and ERECTA Play Opposing Roles in Both Leaf and Inflorescence Development in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1480.	3.6	7
7	A Tyrosine Phosphorylation Cycle Regulates Fungal Activation of a Plant Receptor Ser/Thr Kinase. Cell Host and Microbe, 2018, 23, 241-253.e6.	11.0	72
8	M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. Plant Cell Reports, 2018, 37, 279-291.	5.6	37
9	LOW PHOTOSYNTHETIC EFFICIENCY 1 is required for light-regulated photosystem II biogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6075-E6084.	7.1	33
10	BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2017, 59, 234-239.	8.5	22
11	Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis. Plant Physiology, 2017, 175, 652-666.	4.8	53
12	OsRLCK 57, OsRLCK107 and OsRLCK118 Positively Regulate Chitin- and PGN-Induced Immunity in Rice. Rice, 2017, 10, 6.	4.0	32
13	Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency. Plant Physiology, 2016, 172, 1720-1731.	4.8	47
14	The bHLH Transcription Factor bHLH104 Interacts with IAA-LEUCINE RESISTANT3 and Modulates Iron Homeostasis in Arabidopsis. Plant Cell, 2015, 27, 787-805.	6.6	219
15	Ferredoxin:Thioredoxin Reductase Is Required for Proper Chloroplast Development and Is Involved in the Regulation of Plastid Gene Expression in Arabidopsis thaliana. Molecular Plant, 2014, 7, 1586-1590.	8.3	37
16	HYPERSENSITIVE TO HIGH LIGHT1 Interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and Functions in Protection of Photosystem II from Photodamage in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 1213-1229.	6.6	87
17	Os <scp>CERK</scp> 1 and Os <scp>RLCK</scp> 176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant Journal, 2014, 80, 1072-1084.	5.7	158
18	OsLYP4 and OsLYP6 play critical roles in rice defense signal transduction. Plant Signaling and Behavior, 2013, 8, e22980.	2.4	25

Bing Liu

#	Article	IF	CITATIONS
19	Evidence for a Role of Chloroplastic m-Type Thioredoxins in the Biogenesis of Photosystem II in Arabidopsis. Plant Physiology, 2013, 163, 1710-1728.	4.8	78
20	Lysin Motif–Containing Proteins LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate Immunity. Plant Cell, 2012, 24, 3406-3419.	6.6	277
21	Musa paradisica RCI complements AtRCI and confers Na+ tolerance and K+ sensitivity in Arabidopsis. Plant Science, 2012, 184, 102-111.	3.6	20
22	Rice MAPK phosphatase IBR5 negatively regulates drought stress tolerance in transgenic Nicotiana tabacum. Plant Science, 2012, 188-189, 10-18.	3.6	21
23	OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought stress responses in transgenic tobacco and rice plants. Plant Cell Reports, 2012, 31, 1021-1032.	5.6	24
24	A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011, 7, 30.	4.3	741