
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8174223/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Analysis of admittance measurements of Al/Gr-PVA/p-Si (MPS) structure. Journal of Physics and Chemistry of Solids, 2022, 169, 110861.                                                                                         | 1.9 | 19        |
| 2  | The photo-electrical performance of the novel CuAlMnFe shape memory alloy film in the diode<br>application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021,<br>264, 114931.         | 1.7 | 10        |
| 3  | AÂCompareÂStudy on Electrical Properties of MS Diodes with and Without CoFe2O4-PVP Interlayer.<br>Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1668-1675.                                        | 1.9 | 23        |
| 4  | Electrical characterizationÂof Au/n-Si (MS) diode with and without graphene-polyvinylpyrrolidone<br>(Gr-PVP) interface layer. Journal of Materials Science: Materials in Electronics, 2021, 32, 3451-3459.                    | 1.1 | 19        |
| 5  | Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures. Journal of<br>Materials Science: Materials in Electronics, 2021, 32, 7657-7670.                                                             | 1.1 | 25        |
| 6  | Complex dielectric permittivity, electric modulus and electrical conductivity analysis of<br>Au/Si3N4/p-GaAs (MOS) capacitor. Journal of Materials Science: Materials in Electronics, 2021, 32,<br>11418-11425.               | 1.1 | 21        |
| 7  | Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode. Journal of Materials Science:<br>Materials in Electronics, 2021, 32, 15732-15739.                                                                      | 1.1 | 27        |
| 8  | A systematic influence of Cu doping on structural and opto-electrical properties of fabricated Yb2O3<br>thin films for Al/Cu-Yb2O3/p-Si Schottky diode applications. Inorganic Chemistry Communication, 2021,<br>129, 108646. | 1.8 | 18        |
| 9  | Double-exponential current-voltage (I-V) behavior of bilayer graphene-based Schottky diode. Physica<br>Scripta, 2021, 96, 125836.                                                                                             | 1.2 | 2         |
| 10 | Investigation of structural, kinetics and electrical properties of CuAlMnZn shape memory alloy –<br>p-type silicon Schottky diode. Sensors and Actuators A: Physical, 2021, 331, 112908.                                      | 2.0 | 5         |
| 11 | Electrical, kinetic and photoelectrical properties of CuAlMnMg shape memory alloy/n-Si Schottky<br>diode. Journal of Alloys and Compounds, 2021, 888, 161600.                                                                 | 2.8 | 15        |
| 12 | Effects of temperature and frequency on capacitance and conductance characteristics of zinc-oxide based MIS-Structure. Physica B: Condensed Matter, 2020, 576, 411721.                                                        | 1.3 | 6         |
| 13 | Comparison of electrical properties of MS and MPS type diode in respect of (In2O3-PVP) interlayer.<br>Physica B: Condensed Matter, 2020, 576, 411733.                                                                         | 1.3 | 46        |
| 14 | Impedance spectroscopy of Au/TiO2/n-Si metal-insulator-semiconductor (MIS) capacitor. Physica B:<br>Condensed Matter, 2020, 580, 411945.                                                                                      | 1.3 | 11        |
| 15 | CuAlMnV shape memory alloy thin film based photosensitive diode. Materials Science in Semiconductor Processing, 2020, 107, 104858.                                                                                            | 1.9 | 15        |
| 16 | Current–voltage analyses of Graphene-based structure onto Al2O3/p-Si using various methods.<br>Vacuum, 2020, 181, 109654.                                                                                                     | 1.6 | 18        |
| 17 | Ionizing radiation effects on Au/TiO2/n-Si metal–insulator-semiconductor (MIS) structure. Journal of<br>Materials Science: Materials in Electronics, 2020, 31, 19846-19851.                                                   | 1.1 | 4         |
| 18 | Electrical properties of Graphene/Silicon structure with Al2O3 interlayer. Journal of Materials<br>Science: Materials in Electronics, 2020, 31, 9719-9725.                                                                    | 1.1 | 18        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Electrical characterization of silicon nitride interlayer-based MIS diode. Journal of Materials Science:<br>Materials in Electronics, 2020, 31, 9888-9893.                                                                     | 1.1 | 14        |
| 20 | Electrical and photoresponse properties of CoSO4-PVP interlayer based MPS diodes. Journal of Materials Science: Materials in Electronics, 2020, 31, 11665-11672.                                                               | 1.1 | 22        |
| 21 | C-V-f and G/ï‰-V-f characteristics of Au/(In2O3-PVP)/n-Si (MPS) structure. Physica B: Condensed Matter, 2020, 582, 411996.                                                                                                     | 1.3 | 33        |
| 22 | Electrical Properties of MOS Capacitor with TiO2/SiO2 Dielectric Layer. Silicon, 2020, 12, 2879-2883.                                                                                                                          | 1.8 | 5         |
| 23 | Metallo-Phthalocyanines Based Photocapacitors. Silicon, 2019, 11, 1275-1286.                                                                                                                                                   | 1.8 | 6         |
| 24 | A comparative study on the electrical and dielectric properties of Al/Cd-doped ZnO/p-Si structures.<br>Journal of Materials Science: Materials in Electronics, 2019, 30, 12122-12129.                                          | 1.1 | 35        |
| 25 | Frequency dependent dielectric properties of atomic layer deposition grown zinc-oxide based MIS structure. Physica B: Condensed Matter, 2019, 568, 31-35.                                                                      | 1.3 | 6         |
| 26 | Double-exponential current–voltage (l–V) and negative capacitance (NC) behavior of<br>Al/(CdSe-PVA)/p-Si/Al (MPS) structure. Journal of Materials Science: Materials in Electronics, 2019, 30,<br>9572-9581.                   | 1.1 | 19        |
| 27 | Dielectric, modulus and conductivity studies of Au/PVP/n-Si (MPS) structure in the wide range of<br>frequency and voltage at room temperature. Journal of Materials Science: Materials in Electronics,<br>2019, 30, 6853-6859. | 1.1 | 36        |
| 28 | Electrical characteristics analyses of zinc-oxide based MIS structure grown by atomic layer deposition. Materials Research Express, 2019, 6, 026309.                                                                           | 0.8 | 15        |
| 29 | Cu-Al-Mn shape memory alloy based Schottky diode formed on Si. Physica B: Condensed Matter, 2019, 560, 261-266.                                                                                                                | 1.3 | 14        |
| 30 | Electrical and impedance properties of MPS structure based on (Cu2O–CuO–PVA) interfacial layer.<br>Journal of Materials Science: Materials in Electronics, 2018, 29, 8234-8243.                                                | 1.1 | 41        |
| 31 | The effect of thickness on the optical, structural and electrical properties of ZnO thin film deposited on n-type Si. Journal of Molecular Structure, 2018, 1165, 376-380.                                                     | 1.8 | 15        |
| 32 | A shape memory alloy based on photodiode for optoelectronic applications. Journal of Alloys and Compounds, 2018, 743, 227-233.                                                                                                 | 2.8 | 18        |
| 33 | Frequency-Dependent Dielectric Parameters of Au/TiO2/n-Si (MIS) Structure. Silicon, 2018, 10, 2071-2077.                                                                                                                       | 1.8 | 33        |
| 34 | Structural, Electrical and Photoresponse Properties of Si-based Diode with Organic Interfacial Layer<br>Containing Novel Cyclotriphosphazene Compound. Silicon, 2018, 10, 683-691.                                             | 1.8 | 16        |
| 35 | Optical, Electrical and Photoresponse Properties of Si-based Diodes with NiO-doped TiO2 Film<br>Prepared by Sol-gel Method. Silicon, 2018, 10, 913-920.                                                                        | 1.8 | 17        |
| 36 | Ruthenium(II) Complex Based Photodiode for Organic Electronic Applications. Journal of Electronic<br>Materials, 2018, 47, 828-833.                                                                                             | 1.0 | 35        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs)<br>using current–voltage–temperature (l–V–T) characteristics. Journal of Materials Science: Materials<br>in Electronics, 2018, 29, 159-170.       | 1.1 | 73        |
| 38 | Analysis of interface states in Au/ZnO/p-InP (MOS) structure. Journal of Materials Science: Materials in Electronics, 2018, 29, 12553-12560.                                                                                                  | 1.1 | 36        |
| 39 | Forward and reverse bias current–voltage (l–V) characteristics in the<br>metal–ferroelectric–semiconductor (Au/SrTiO3/n-Si) structures at room temperature. Journal of<br>Materials Science: Materials in Electronics, 2018, 29, 16740-16746. | 1.1 | 27        |
| 40 | Analysis of barrier inhomogeneities in AuGe/n-Ge Schottky diode. Indian Journal of Physics, 2018, 92, 1397-1402.                                                                                                                              | 0.9 | 16        |
| 41 | Boron doped graphene based linear dynamic range photodiode. Physica B: Condensed Matter, 2018, 545,<br>86-93.                                                                                                                                 | 1.3 | 25        |
| 42 | Electronic and optoelectronic properties of Al/coumarin doped Pr2Se3–Tl2Se/p-Si devices. Journal of<br>Materials Science: Materials in Electronics, 2018, 29, 12561-12572.                                                                    | 1.1 | 24        |
| 43 | Frequency and electric field controllable photodevice: FYTRONIX device. Physica B: Condensed Matter, 2017, 519, 53-58.                                                                                                                        | 1.3 | 16        |
| 44 | A functional material based photodiode for solar tracking systems. Physica B: Condensed Matter, 2017, 520, 76-81.                                                                                                                             | 1.3 | 18        |
| 45 | Electrical Properties of Dilute Nitride GaAsPN/GaPN MQW p–i–n Diode. Journal of Electronic<br>Materials, 2017, 46, 4590-4595.                                                                                                                 | 1.0 | 5         |
| 46 | A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller.<br>Physica B: Condensed Matter, 2017, 527, 44-51.                                                                                          | 1.3 | 19        |
| 47 | Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene dopedâ€PVA/nâ€Si (MPS) structures. Journal of Applied Polymer Science, 2016, 133, .                        | 1.3 | 47        |
| 48 | Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique.<br>Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                                                    | 1.1 | 26        |
| 49 | Single crystal ruthenium(II) complex dye based photodiode. Dyes and Pigments, 2016, 132, 64-71.                                                                                                                                               | 2.0 | 46        |
| 50 | A new shape memory alloy film/p-Si solar light four quadrant detector for solar tracking applications. Journal of Alloys and Compounds, 2016, 688, 762-768.                                                                                   | 2.8 | 35        |
| 51 | Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements. Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                                                                | 1.1 | 16        |
| 52 | Photoresponse and photocapacitor properties of Au/AZO/p-Si/Al diode with AZO film prepared by pulsed laser deposition (PLD) method. Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                        | 1.1 | 37        |
| 53 | Graphene–cobalt phthalocyanine based on optoelectronic device for solar panel tracking systems.<br>Synthetic Metals, 2015, 206, 15-23.                                                                                                        | 2.1 | 30        |
| 54 | Photodiode and photocapacitor properties of Au/CdTe/p-Si/Al device. Journal of Alloys and Compounds, 2015, 646, 1151-1156.                                                                                                                    | 2.8 | 59        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Composite metal oxide semiconductor based photodiodes for solar panel tracking applications.<br>Journal of Alloys and Compounds, 2015, 650, 692-699.                                                                                                              | 2.8 | 12        |
| 56 | A novel type heterojunction photodiodes formed junctions of Au/LiZnSnO and LiZnSnO/p-Si in series.<br>Journal of Alloys and Compounds, 2015, 625, 18-25.                                                                                                          | 2.8 | 44        |
| 57 | Ferroelectric Bi3.25La0.75Ti3O12 photodiode for solar cell applications. Solar Energy Materials and Solar Cells, 2015, 133, 69-75.                                                                                                                                | 3.0 | 31        |
| 58 | Effects of Temperature on Dielectric Parameters of Metal-Oxide-Semiconductor Capacitor with Thermal Oxide Layer. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 675-679.                                                                               | 0.1 | 5         |
| 59 | Effects of gamma irradiation on electrical parameters of metal–insulator–semiconductor structure<br>with silicon nitride interfacial insulator layer. Radiation Effects and Defects in Solids, 2014, 169,<br>791-799.                                             | 0.4 | 14        |
| 60 | Dielectric characteristics of gamma irradiated Au/SnO2/n-Si/Au (MOS) capacitor. Materials Science in<br>Semiconductor Processing, 2014, 28, 89-93.                                                                                                                | 1.9 | 12        |
| 61 | Photoconducting properties of Cd0.4ZnO0.6/p-Si photodiode by sol gel method. Journal of Electroceramics, 2014, 32, 369-375.                                                                                                                                       | 0.8 | 18        |
| 62 | Electrical and photoconducting properties of nanorod in based spinel compound/p-Si photodiode by sol–gel spin coating technique. Journal of Sol-Gel Science and Technology, 2014, 71, 421-427.                                                                    | 1.1 | 11        |
| 63 | Analysis of Electrical Characteristics of Metal-Oxide-Semiconductor Capacitor by Impedance<br>Spectroscopy. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 515-519.                                                                                     | 0.1 | 6         |
| 64 | The Richardson constant and barrier inhomogeneity at Au/Si <sub>3</sub> N <sub>4</sub> /n-Si (MIS)<br>Schottky diodes. Physica Scripta, 2013, 88, 015801.                                                                                                         | 1.2 | 47        |
| 65 | Temperature-dependent dielectric properties of Au/Si <sub>3</sub> N <sub>4</sub> /n-Si<br>(metal—insulator—semiconductor) structures. Chinese Physics B, 2013, 22, 117310.                                                                                        | 0.7 | 18        |
| 66 | Determination of interface states and their time constant for Au/SnO <sub>2</sub> /n-Si (MOS) capacitors using admittance measurements. Chinese Physics B, 2013, 22, 047303.                                                                                      | 0.7 | 29        |
| 67 | Comparative study of the electrical properties of Au/n-Si (MS) and<br>Au/Si <sub>3</sub> N <sub>4</sub> /n-Si (MIS) Schottky diodes. Chinese Physics B, 2013, 22, 068402.                                                                                         | 0.7 | 41        |
| 68 | Analysis of the series resistance and interface states of Au/Si <sub>3</sub> N <sub>4</sub> /n-Si<br>(metal–insulator–semiconductor) Schottky diodes using <i>I</i> – <i>V</i> characteristics in a wide<br>temperature range. Physica Scripta, 2012, 86, 035802. | 1.2 | 39        |
| 69 | Influence of Temperature and Frequency on Dielectric Permittivity and ac Conductivity of Au/SnO<br><sub>2</sub> /n-Si (MOS) Structures. Chinese Physics Letters, 2012, 29, 077304.                                                                                | 1.3 | 46        |
| 70 | On the temperature dependent dielectric properties, conductivity and resistivity of MIS structures at 1MHz. Microelectronic Engineering, 2012, 91, 154-158.                                                                                                       | 1.1 | 40        |
| 71 | The density of interface states and their relaxation times in<br>Au/Bi <sub>4</sub> Ti <sub>3</sub> O <sub>12</sub> /SiO <sub>2</sub> /nâ€6i(MFIS) structures. Surface and<br>Interface Analysis, 2011, 43, 1561-1565.                                            | 0.8 | 27        |
| 72 | The role of 60Co γ-ray irradiation on the interface states and series resistance in MIS structures.<br>Radiation Physics and Chemistry, 2010, 79, 457-461.                                                                                                        | 1.4 | 16        |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Analysis of surface states and series resistance in Au/n-Si Schottky diodes with insulator layer using current–voltage and admittance–voltage characteristics. Vacuum, 2009, 84, 363-368.                                                                                    | 1.6 | 55        |
| 74 | Gamma-ray irradiation effects on the interface states of MIS structures. Sensors and Actuators A: Physical, 2009, 151, 168-172.                                                                                                                                              | 2.0 | 11        |
| 75 | The distribution of barrier heights in MIS type Schottky diodes from current–voltage–temperature<br>(I–V–T) measurements. Journal of Alloys and Compounds, 2009, 479, 893-897.                                                                                               | 2.8 | 67        |
| 76 | The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using l–V characteristics. Journal of Alloys and Compounds, 2009, 484, 405-409.                                                                                       | 2.8 | 93        |
| 77 | On the profile of frequency dependent series resistance and surface states in<br>Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures. Microelectronic Engineering, 2008, 85, 81-88.                                                                                                      | 1.1 | 74        |
| 78 | The interface states analysis of the MIS structure as a function of frequency. Microelectronic Engineering, 2008, 85, 542-547.                                                                                                                                               | 1.1 | 9         |
| 79 | On the energy distribution of interface states and their relaxation time and capture cross section profiles in Al/SiO2/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 2008, 85, 1495-1501.                                                                         | 1.1 | 68        |
| 80 | Dielectric properties and ac electrical conductivity studies of MIS type Schottky diodes at high temperatures. Microelectronic Engineering, 2008, 85, 1518-1523.                                                                                                             | 1.1 | 52        |
| 81 | Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS)<br>structures. Microelectronic Engineering, 2008, 85, 1866-1871.                                                                                                        | 1.1 | 35        |
| 82 | Analysis of electrical characteristics of Au/SiO2/n-Si (MOS) capacitors using the high–low frequency capacitance and conductance methods. Microelectronic Engineering, 2008, 85, 2256-2260.                                                                                  | 1.1 | 78        |
| 83 | The effect of 60Co (γ-ray) irradiation on the electrical characteristics of Au/SnO2/n-Si (MIS)<br>structures. Radiation Physics and Chemistry, 2008, 77, 74-78.                                                                                                              | 1.4 | 23        |
| 84 | Characterization of interface states at Au/SnO2/n-Si (MOS) structures. Vacuum, 2008, 82, 1203-1207.                                                                                                                                                                          | 1.6 | 35        |
| 85 | The temperature profile and bias dependent series resistance of Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures. Vacuum, 2008, 82, 1246-1250.                                                                                                                                       | 1.6 | 21        |
| 86 | Analysis of interface states and series resistance of MIS Schottky diodes using the current–voltage<br>(I–V) characteristics. Microelectronic Engineering, 2008, 85, 233-237.                                                                                                | 1.1 | 61        |
| 87 | Frequency and voltage effects on the dielectric properties and electrical conductivity of<br>Al–TiW–Pd2Si/n-Si structures. Microelectronic Engineering, 2008, 85, 247-252.                                                                                                   | 1.1 | 106       |
| 88 | Analysis of interface states and series resistance at MIS structure irradiated under 60Co Î <sup>3</sup> -rays.<br>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,<br>Detectors and Associated Equipment, 2007, 580, 1588-1593. | 0.7 | 15        |
| 89 | Effects of beta-ray irradiation on the C–V and G/̉–V characteristics of Au/SiO2/n-Si (MOS) structures.<br>Nuclear Instruments & Methods in Physics Research B, 2007, 254, 273-277.                                                                                           | 0.6 | 5         |
| 90 | Irradiation effect on dielectric properties and electrical conductivity of Au/SiO2/n-Si (MOS)<br>structures. Nuclear Instruments & Methods in Physics Research B, 2007, 264, 73-78.                                                                                          | 0.6 | 6         |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2). Physica B: Condensed Matter, 2007, 399, 146-154.                                                                                      | 1.3 | 41        |
| 92  | On the profile of frequency dependent series resistance and dielectric constant in MIS structure.<br>Microelectronic Engineering, 2007, 84, 180-186.                                                                                                                      | 1.1 | 67        |
| 93  | The effects of frequency and Î <sup>3</sup> -irradiation on the dielectric properties of MIS type Schottky diodes.<br>Nuclear Instruments & Methods in Physics Research B, 2007, 254, 113-117.                                                                            | 0.6 | 15        |
| 94  | Electrical and dielectric properties of MIS Schottky diodes at low temperatures. Microelectronic Engineering, 2006, 83, 2551-2557.                                                                                                                                        | 1.1 | 61        |
| 95  | 60Co γ irradiation effects on the current–voltage (l–V) characteristics of Al/SiO2/p-Si (MIS) Schottky<br>diodes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,<br>Spectrometers, Detectors and Associated Equipment, 2006, 568, 863-868. | 0.7 | 36        |
| 96  | Electrical characteristics of 60Co $\hat{l}^3$ -ray irradiated MIS Schottky diodes. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 257-262.                                                                                                              | 0.6 | 36        |
| 97  | Characterization of current–voltage (l–V) and capacitance–voltage–frequency (C–V–f) features of<br>Al/SiO2/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 2006, 83, 582-588.                                                                                    | 1.1 | 114       |
| 98  | The C–V–f and G/ω–V–f characteristics of Al/SiO2/p-Si (MIS) structures. Microelectronic Engineering,<br>2006, 83, 2021-2026.                                                                                                                                              | 1.1 | 49        |
| 99  | Density of interface states, excess capacitance and series resistance in the<br>metal–insulator–semiconductor (MIS) solar cells. Solar Energy Materials and Solar Cells, 2005, 85,<br>345-358.                                                                            | 3.0 | 79        |
| 100 | The effect of interface states, excess capacitance and series resistance in the Al/SiO2/p-Si Schottky diodes. Applied Surface Science, 2005, 252, 1732-1738.                                                                                                              | 3.1 | 80        |
| 101 | Dielectric properties in Au/SnO2/n-Si (MOS) structures irradiated under 60Co-γ rays. Microelectronics<br>Journal, 2004, 35, 731-738.                                                                                                                                      | 1.1 | 14        |
| 102 | Au/SnO2/n-Si (MOS) structures response to radiation and frequency. Microelectronics Journal, 2003, 34, 1043-1049.                                                                                                                                                         | 1.1 | 43        |
| 103 | The role of interface states and series resistance on the l–V and C–V characteristics in Al/SnO2/p-Si<br>Schottky diodes. Solid-State Electronics, 2003, 47, 1847-1854.                                                                                                   | 0.8 | 192       |