
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A mass-balance model to assess arsenic exposure from multiple wells in Bangladesh. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 442-450.	3.9	7
2	Groundwater fluoride across the Punjab plains of Pakistan and India: Distribution and underlying mechanisms. Science of the Total Environment, 2022, 806, 151353.	8.0	24
3	Demand for Information on Environmental Health Risk, Mode of Delivery, and Behavioral Change: Evidence from Sonargaon, Bangladesh. World Bank Economic Review, 2021, 35, 764-792.	2.4	3
4	Recommended Sampling Intervals for Arsenic inÂPrivate Wells. Ground Water, 2021, 59, 80-89.	1.3	6
5	Evaluation of a field kit for testing arsenic in paddy soil contaminated by irrigation water. Geoderma, 2021, 382, 114755.	5.1	4
6	Well‣witching to Reduce Arsenic Exposure in Bangladesh: Making the Most of Inaccurate Field Kit Measurements. GeoHealth, 2021, 5, e2021GH000464.	4.0	4
7	Testing Homes for Potential Sources of Lead Exposure as a Highâ€School Science Project. GeoHealth, 2021, 5, e2021GH000498.	4.0	6
8	Aquifer-Scale Observations of Iron Redox Transformations in Arsenic-Impacted Environments to Predict Future Contamination. Environmental Science and Technology Letters, 2020, 7, 916-922.	8.7	19
9	Fallout of Lead Over Paris From the 2019 Notreâ€Dame Cathedral Fire. GeoHealth, 2020, 4, e2020GH000279.	4.0	13
10	Arsenic contamination of Bangladesh aquifers exacerbated by clay layers. Nature Communications, 2020, 11, 2244.	12.8	68
11	Similar retardation of arsenic in gray Holocene and orange Pleistocene sediments: Evidence from field-based column experiments in Bangladesh. Water Research, 2020, 183, 116081.	11.3	9
12	Regulation of groundwater arsenic concentrations in the Ravi, Beas, and Sutlej floodplains of Punjab, India. Geochimica Et Cosmochimica Acta, 2020, 276, 384-403.	3.9	14
13	New Approaches to Identifying and Reducing the Global Burden of Disease From Pollution. GeoHealth, 2020, 4, e2018GH000167.	4.0	24
14	Soil arsenic but not rice arsenic increasing with arsenic in irrigation water in the Punjab plains of Pakistan. Plant and Soil, 2020, 450, 601-611.	3.7	15
15	Evaluating Strategies to Reduce Arsenic Poisoning in South Asia: A View from the Social Sciences. Asian Development Review, 2020, 37, 21-44.	1.5	6
16	Demand for Information on Environmental Health Risk, Mode of Delivery, and Behavioral Change: Evidence from Sonargaon, Bangladesh. , 2020, , .		2
17	Quantifying Riverine Recharge Impacts on Redox Conditions and Arsenic Release in Groundwater Aquifers Along the Red River, Vietnam. Water Resources Research, 2019, 55, 6712-6728.	4.2	16
18	Does Involving Parents in Soil Sampling Identify Causes of Child Exposure to Lead? A Case Study of Community Engagement in Miningâ€Impacted Towns in Peru. GeoHealth, 2019, 3, 218-236.	4.0	8

#	Article	IF	CITATIONS
19	Changes in arsenic exposure in Araihazar, Bangladesh from 2001 through 2015 following a blanket well testing and education campaign. Environment International, 2019, 125, 82-89.	10.0	21
20	A Field Procedure To Screen Soil for Hazardous Lead. Analytical Chemistry, 2019, 91, 8192-8198.	6.5	18
21	Effectiveness of Different Approaches to Arsenic Mitigation over 18 Years in Araihazar, Bangladesh: Implications for National Policy. Environmental Science & Technology, 2019, 53, 5596-5604.	10.0	37
22	Inversion of High-Arsenic Soil for Improved Rice Yield in Bangladesh. Environmental Science & Technology, 2019, 53, 3410-3418.	10.0	13
23	Field testing of over 30,000 wells for arsenic across 400 villages of the Punjab plains of Pakistan and India: Implications for prioritizing mitigation. Science of the Total Environment, 2019, 654, 1358-1363.	8.0	47
24	Quantitative drinking water arsenic concentrations in field environments using mobile phone photometry of field kits. Science of the Total Environment, 2018, 618, 579-585.	8.0	19
25	Simultaneously quantifying ferrihydrite and goethite in natural sediments using the method of standard additions with X-ray absorption spectroscopy. Chemical Geology, 2018, 476, 248-259.	3.3	32
26	Urinary metals and metal mixtures in Bangladesh: Exploring environmental sources in the Health Effects of Arsenic Longitudinal Study (HEALS). Environment International, 2018, 121, 852-860.	10.0	26
27	A cross-sectional study of water arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environment International, 2018, 118, 304-313.	10.0	59
28	Reversible adsorption and flushing of arsenic in a shallow, Holocene aquifer of Bangladesh. Applied Geochemistry, 2017, 77, 142-157.	3.0	41
29	Field Study of Rice Yield Diminished by Soil Arsenic in Bangladesh. Environmental Science & Technology, 2017, 51, 11553-11560.	10.0	38
30	Demand for environmental quality information and household response: Evidence from well-water arsenic testing. Journal of Environmental Economics and Management, 2017, 86, 160-192.	4.7	24
31	Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. MBio, 2017, 8, .	4.1	46
32	Child Intelligence and Reductions in Water Arsenic and Manganese: A Two-Year Follow-up Study in Bangladesh. Environmental Health Perspectives, 2016, 124, 1114-1120.	6.0	46
33	Provision of well-water treatment units to 600 households in Bangladesh: A longitudinal analysis of urinary arsenic indicates fading utility. Science of the Total Environment, 2016, 563-564, 131-137.	8.0	13
34	River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam. Water Resources Research, 2016, 52, 6321-6334.	4.2	57
35	Megacity pumping and preferential flow threaten groundwater quality. Nature Communications, 2016, 7, 12833.	12.8	96
36	Folic Acid and Creatine as Therapeutic Approaches to Lower Blood Arsenic: A Randomized Controlled Trial. Environmental Health Perspectives, 2015, 123, 1294-1301.	6.0	76

#	Article	IF	CITATIONS
37	Evaluation of an Elementary School–based Educational Intervention for Reducing Arsenic Exposure in Bangladesh. Environmental Health Perspectives, 2015, 123, 1331-1336.	6.0	16
38	Evolution of households' responses to the groundwater arsenic crisis in Bangladesh: information on environmental health risks can have increasing behavioral impact over time. Environment and Development Economics, 2014, 19, 631-647.	1.5	22
39	Confirmation of elevated arsenic levels in groundwater of Myanmar. Science of the Total Environment, 2014, 478, 21-24.	8.0	39
40	A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren. Environmental Health, 2014, 13, 23.	4.0	136
41	Comparison of two blanket surveys of arsenic in tubewells conducted 12years apart in a 25km2 area of Bangladesh. Science of the Total Environment, 2014, 488-489, 484-492.	8.0	54
42	Retardation of arsenic transport through a Pleistocene aquifer. Nature, 2013, 501, 204-207.	27.8	136
43	Approaches to Increase Arsenic Awareness in Bangladesh. Health Education and Behavior, 2013, 40, 331-338.	2.5	14
44	Impact of a randomized controlled trial in arsenic risk communication on household water-source choices in Bangladesh. Journal of Environmental Economics and Management, 2013, 65, 225-240.	4.7	60
45	Arsenic Exposure from Drinking Water and QT-Interval Prolongation: Results from the Health Effects of Arsenic Longitudinal Study. Environmental Health Perspectives, 2013, 121, 427-432.	6.0	45
46	Chronic Arsenic Exposure and Blood Glutathione and Glutathione Disulfide Concentrations in Bangladeshi Adults. Environmental Health Perspectives, 2013, 121, 1068-1074.	6.0	66
47	A Dose–Response Study of Arsenic Exposure and Global Methylation of Peripheral Blood Mononuclear Cell DNA in Bangladeshi Adults. Environmental Health Perspectives, 2013, 121, 1306-1312.	6.0	51
48	Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5331-5335.	7.1	96
49	Lead exposure from soil in Peruvian mining towns: a national assessment supported by two contrasting examples. Bulletin of the World Health Organization, 2012, 90, 878-886.	3.3	42
50	Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers. American Journal of Epidemiology, 2012, 175, 1252-1261.	3.4	63
51	Manganese exposure from drinking water and children's academic achievement. NeuroToxicology, 2012, 33, 91-97.	3.0	199
52	A cluster-based randomized controlled trial promoting community participation in arsenic mitigation efforts in Bangladesh. Environmental Health, 2012, 11, 41.	4.0	30
53	Impact on arsenic exposure of a growing proportion of untested wells in Bangladesh. Environmental Health, 2012, 11, 7.	4.0	17
54	Evaluation of an Arsenic Test Kit for Rapid Well Screening in Bangladesh. Environmental Science & Technology, 2012, 46, 11213-11219.	10.0	78

#	Article	IF	CITATIONS
55	Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ: British Medical Journal, 2011, 342, d2431-d2431.	2.3	344
56	Fecal Contamination of Shallow Tubewells in Bangladesh Inversely Related to Arsenic. Environmental Science & amp; Technology, 2011, 45, 1199-1205.	10.0	74
57	Microbes Enhance Mobility of Arsenic in Pleistocene Aquifer Sand from Bangladesh. Environmental Science & Technology, 2011, 45, 2648-2654.	10.0	64
58	Arsenic and manganese exposure and children's intellectual function. NeuroToxicology, 2011, 32, 450-457.	3.0	217
59	Arsenic Exposure and Motor Function among Children in Bangladesh. Environmental Health Perspectives, 2011, 119, 1665-1670.	6.0	160
60	Manganese Exposure from Drinking Water and Children's Classroom Behavior in Bangladesh. Environmental Health Perspectives, 2011, 119, 1501-1506.	6.0	164
61	Increase in Diarrheal Disease Associated with Arsenic Mitigation in Bangladesh. PLoS ONE, 2011, 6, e29593.	2.5	30
62	Contrasting Influence of Geology on E. coli and Arsenic in Aquifers of Bangladesh. Ground Water, 2011, 49, 111-123.	1.3	45
63	Impact of tubewell access and tubewell depth on childhood diarrhea in Matlab, Bangladesh. Environmental Health, 2011, 10, 109.	4.0	17
64	Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet, The, 2010, 376, 252-258.	13.7	590
65	Arsenic exposure from drinking water and mortality in Bangladesh – Authors' reply. Lancet, The, 2010, 376, 1642.	13.7	3
66	Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 2010, 328, 1123-1127.	12.6	972
67	Arsenic meets dense populations. Nature Geoscience, 2008, 1, 494-496.	12.9	8
68	Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Applied Geochemistry, 2008, 23, 3143-3154.	3.0	107
69	Protective Effects of B Vitamins and Antioxidants on the Risk of Arsenic-Related Skin Lesions in Bangladesh. Environmental Health Perspectives, 2008, 116, 1056-1062.	6.0	69
70	Monitoring 51 community wells in Araihazar, Bangladesh, for up to 5 years: Implications for arsenic mitigation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1729-1740.	1.7	95
71	Can information alone change behavior? Response to arsenic contamination of groundwater in Bangladesh. Journal of Development Economics, 2007, 84, 731-754.	4.5	227
72	A Prospective Study of Blood Selenium Levels and the Risk of Arsenic-Related Premalignant Skin Lesions. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 207-213.	2.5	99

#	Article	lF	CITATIONS
73	Reduction in Urinary Arsenic Levels in Response to Arsenic Mitigation Efforts in Araihazar, Bangladesh. Environmental Health Perspectives, 2007, 115, 917-923.	6.0	89
74	Association between Manganese Exposure through Drinking Water and Infant Mortality in Bangladesh. Environmental Health Perspectives, 2007, 115, 1107-1112.	6.0	107
75	Determinants of Arsenic Metabolism: Blood Arsenic Metabolites, Plasma Folate, Cobalamin, and Homocysteine Concentrations in Maternal–Newborn Pairs. Environmental Health Perspectives, 2007, 115, 1503-1509.	6.0	158
76	Water Arsenic Exposure and Intellectual Function in 6-Year-Old Children in Araihazar, Bangladesh. Environmental Health Perspectives, 2007, 115, 285-289.	6.0	281
77	Health Effects of Arsenic Longitudinal Study (HEALS): Description of a multidisciplinary epidemiologic investigation. Journal of Exposure Science and Environmental Epidemiology, 2006, 16, 191-205.	3.9	251
78	Sediment Cd and Mo accumulation in the oxygen-minimum zone off western Baja California linked to global climate over the past 52 kyr. Paleoceanography, 2006, 21, .	3.0	48
79	Modification of Risk of Arsenic-Induced Skin Lesions by Sunlight Exposure, Smoking, and Occupational Exposures in Bangladesh. Epidemiology, 2006, 17, 459-467.	2.7	90
80	Blood arsenic as a biomarker of arsenic exposure: Results from a prospective study. Toxicology, 2006, 225, 225-233.	4.2	184
81	Water Manganese Exposure and Children's Intellectual Function in Araihazar, Bangladesh. Environmental Health Perspectives, 2006, 114, 124-129.	6.0	652
82	Prevalence of Arsenic Exposure from Drinking Water and Awareness of Its Health Risks in a Bangladeshi Population: Results from a Large Population-Based Study. Environmental Health Perspectives, 2006, 114, 355-359.	6.0	98
83	Arsenic Exposure from Drinking Water and Risk of Premalignant Skin Lesions in Bangladesh: Baseline Results from the Health Effects of Arsenic Longitudinal Study. American Journal of Epidemiology, 2006, 163, 1138-1148.	3.4	255
84	Arsenic Exposure from Drinking Water, Dietary Intakes of B Vitamins and Folate, and Risk of High Blood Pressure in Bangladesh: A Population-based, Cross-sectional Study. American Journal of Epidemiology, 2006, 165, 541-552.	3.4	116
85	Association Between Arsenic Exposure and a Measure of Subclinical Sensory Neuropathy in Bangladesh. Journal of Occupational and Environmental Medicine, 2005, 47, 778-784.	1.7	53
86	Guest Editorial: Reducing Arsenic Exposure from Drinking Water: Different Settings Call for Different Approaches. Environmental Health Perspectives, 2005, 113, A360-1.	6.0	3
87	Direct Data Manipulation for Local Decision Analysis as Applied to the Problem of Arsenic in Drinking Water from Tube Wells in Bangladesh. Risk Analysis, 2004, 24, 1597-1612.	2.7	25
88	Water Arsenic Exposure and Children's Intellectual Function in Araihazar, Bangladesh. Environmental Health Perspectives, 2004, 112, 1329-1333.	6.0	543
89	Comment on "Arsenic Mobility and Groundwater Extraction in Bangladesh" (II). Science, 2003, 300, 584c-584.	12.6	47
90	Community wells to mitigate the arsenic crisis in Bangladesh. Bulletin of the World Health Organization, 2003, 81, 632-8.	3.3	45

#	Article	IF	CITATIONS
91	Preservation of particulate non-lithogenic uranium in marine sediments. Geochimica Et Cosmochimica Acta, 2002, 66, 3085-3092.	3.9	171
92	Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochimica Et Cosmochimica Acta, 2002, 66, 849-865.	3.9	46
93	Remobilization of authigenic uranium in marine sediments by bioturbation. Geochimica Et Cosmochimica Acta, 2002, 66, 1759-1772.	3.9	192
94	Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh. Bulletin of the World Health Organization, 2002, 80, 732-7.	3.3	127
95	Associations Between Drinking Water and Urinary Arsenic Levels and Skin Lesions in Bangladesh. Journal of Occupational and Environmental Medicine, 2000, 42, 1195-1201.	1.7	155
96	Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochimica Et Cosmochimica Acta, 2000, 64, 4165-4178.	3.9	422
97	Intensification of the Northeast Pacific oxygen minimum zone during the Bölling-Alleröd Warm Period. Paleoceanography, 2000, 15, 528-536.	3.0	102
98	The impact of human activities on sediments of San Francisco Bay, California: an overview. Marine Chemistry, 1999, 64, 1-6.	2.3	50
99	A record of estuarine water contamination from the Cd content of foraminiferal tests in San Francisco Bay, California. Marine Chemistry, 1999, 64, 57-69.	2.3	23
100	Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California. Marine Chemistry, 1999, 64, 99-113.	2.3	160
101	Historical trends of metals in the sediments of San Francisco Bay, California. Marine Chemistry, 1999, 64, 39-55.	2.3	224
102	Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin. Geochimica Et Cosmochimica Acta, 1999, 63, 2199-2209.	3.9	52
103	Bright Lines, Risk Beliefs, and Risk Avoidance: Evidence from a Randomized Intervention in Bangladesh. SSRN Electronic Journal, 0, , .	0.4	3
104	Bright Lines, Risk Beliefs, and Risk Avoidance: Evidence from a Randomized Intervention in Bangladesh. SSRN Electronic Journal, 0, , .	0.4	1