Ricardo N.M.J. PÃ;scoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship Between Gymnastic Rhythmic Practice and Body Composition, Physical Performance, and Trace Element Status in Young Girls. Biological Trace Element Research, 2022, 200, 84-95.	1.9	6
2	Photoluminescent and visual determination of ibandronic acid using a carbon dots/AgInS2 quantum dots ratiometric sensing platform. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120592.	2.0	17
3	The use of in-situ Raman spectroscopy to monitor at real time the quality of different types of edible oils under frying conditions. Food Control, 2022, 136, 108879.	2.8	10
4	Oral lichen planus identification by mid-infrared spectroscopy of oral biofluids: A case-control study. Clinica Chimica Acta, 2022, 530, 126-133.	0.5	0
5	Geographical discrimination of grapevine leaves using fibre optic fluorescence data and chemometrics. Determination of total polyphenols and chlorophylls along different vegetative stages. Microchemical Journal, 2022, 181, 107647.	2.3	3
6	Near infrared spectroscopy coupled to MCR-ALS for the identification and quantification of saffron adulterants: Application to complex mixtures. Food Control, 2021, 123, 107776.	2.8	13
7	Three-way calibration using PARAFAC and MCR-ALS with previous synchronization of second-order chromatographic data through a new functional alignment of pure vectors for the quantification in the presence of retention time shifts in peak position and shape. Analytica Chimica Acta, 2021, 1146, 98-108.	2.6	11
8	Near Infrared (NIR) Spectroscopy as a Tool to Assess Blends Composition and Discriminate Antioxidant Activity of Olive Pomace Cultivars. Waste and Biomass Valorization, 2021, 12, 4901-4913.	1.8	4
9	Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants. Talanta, 2021, 230, 122373.	2.9	23
10	Chemometric-assisted kinetic determination of oxytetracycline using AgInS2 quantum dots as PL sensing platforms. Analytica Chimica Acta, 2021, 1188, 339174.	2.6	7
11	Influence of Olive Pomace Blending on Antioxidant Activity: Additive, Synergistic, and Antagonistic Effects. Molecules, 2021, 26, 169.	1.7	6
12	The diagnosis of eating disorders through mid-infrared spectroscopy of the gingival crevicular fluid: a pilot trial. Eating and Weight Disorders, 2020, 25, 1111-1115.	1.2	2
13	The application of near infrared spectroscopy to wine analysis: An innovative approach using lyophilization to remove water bands interference. Talanta, 2020, 214, 120852.	2.9	13
14	Fourier transform near infrared spectroscopy as a tool to discriminate olive wastes: The case of monocultivar pomaces. Waste Management, 2020, 103, 378-387.	3.7	14
15	Detection of melamine and sucrose as adulterants in milk powder using near-infrared spectroscopy with DD-SIMCA as one-class classifier and MCR-ALS as a means to provide pure profiles of milk and of both adulterants with forensic evidence: A short communication. Talanta, 2020, 216, 120937.	2.9	34
16	Comparative quantification of chlorophyll and polyphenol levels in grapevine leaves sampled from different geographical locations. Scientific Reports, 2020, 10, 6246.	1.6	21
17	Applying nanotechnology to increase the rumen protection of amino acids in dairy cows. Scientific Reports, 2020, 10, 6830.	1.6	6
18	Dual-emission CdTe/AgInS2 photoluminescence probe coupled to neural network data processing for the simultaneous determination of folic acid and iron (II). Analytica Chimica Acta, 2020, 1114, 29-41.	2.6	16

#	Article	IF	CITATIONS
19	Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS. Analytical Methods, 2020, 12, 2407-2421.	1.3	7
20	Simultaneous Determination of Medicinal Drugs with Overlapping Profiles Contained in Low Chromatographic Resolution Data using HPLC-DAD and Multivariate Curve Resolution. Current Analytical Chemistry, 2020, 16, 843-853.	0.6	4
21	Antioxidant Activity of Blueberry (Vaccinium spp.) Cultivar Leaves: Differences Across the Vegetative Stage and the Application of Near Infrared Spectroscopy. Molecules, 2019, 24, 3900.	1.7	7
22	Discrimination of Camellia japonica cultivars and chemometric models: An interlaboratory study. Computers and Electronics in Agriculture, 2019, 159, 28-33.	3.7	5
23	Antioxidant capacity of Camellia japonica cultivars assessed by near- and mid-infrared spectroscopy. Planta, 2019, 249, 1053-1062.	1.6	14
24	Tuning CdTe quantum dots reactivity for multipoint detection of mercury(II), silver(I) and copper(II). Journal of Luminescence, 2019, 207, 386-396.	1.5	32
25	The effect of aging on the (mis)perception of intentionality - an ERP study. Social Neuroscience, 2019, 14, 149-161.	0.7	3
26	Is There a Relationship Between Optimal Cerebral Perfusion Pressure-Guided Management and PaO2/FiO2 Ratio After Severe Traumatic Brain Injury?. Acta Neurochirurgica Supplementum, 2018, 126, 59-62.	0.5	7
27	Raman spectroscopy for wine analyses: A comparison with near and mid infrared spectroscopy. Talanta, 2018, 186, 306-314.	2.9	50
28	<i>Citrus</i> species and hybrids depicted by near―and mid―nfrared spectroscopy. Journal of the Science of Food and Agriculture, 2018, 98, 3953-3961.	1.7	10
29	Near infrared spectroscopy as a tool for intensive mapping of vineyards soil. Precision Agriculture, 2018, 19, 445-462.	3.1	12
30	Varietal discrimination of hop pellets by near and mid infrared spectroscopy. Talanta, 2018, 180, 69-75.	2.9	21
31	Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study. Talanta, 2018, 179, 292-299.	2.9	42
32	In Situ Visible and Near-Infrared Spectroscopy Applied to Vineyards as a Tool for Precision Viticulture. Comprehensive Analytical Chemistry, 2018, 80, 253-279.	0.7	4
33	A review on the application of vibrational spectroscopy in the wine industry: From soil to bottle. TrAC - Trends in Analytical Chemistry, 2017, 88, 100-118.	5.8	82
34	A Non-invasive Real-Time Methodology for the Quantification of Antioxidant Properties in Coffee During the Roasting Process Based on Near-Infrared Spectroscopy. Food and Bioprocess Technology, 2017, 10, 630-638.	2.6	27
35	Merging vibrational spectroscopic data for wine classification according to the geographic origin. Food Research International, 2017, 102, 504-510.	2.9	48
36	Multiplexed analysis combining distinctly-sized CdTe-MPA quantum dots and chemometrics for multiple mutually interfering analyte determination. Talanta, 2017, 174, 572-580.	2.9	22

Ricardo N.M.J. PÃiscoa

#	Article	IF	CITATIONS
37	Classification of Vineyard Soils Using Portable and Benchtop Nearâ€Infrared Spectrometers: A Comparative Study. Soil Science Society of America Journal, 2016, 80, 652-661.	1.2	9
38	Assessing a novel polymer-wick based electrode for EEG neurophysiological research. Journal of Neuroscience Methods, 2016, 267, 126-131.	1.3	20
39	In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chemistry, 2016, 208, 103-110.	4.2	53
40	Exploratory study on vineyards soil mapping by visible/near-infrared spectroscopy of grapevine leaves. Computers and Electronics in Agriculture, 2016, 127, 15-25.	3.7	26
41	Application of Fourier-transform infrared spectroscopy for the determination of chloride and sulfate in wines. LWT - Food Science and Technology, 2016, 67, 181-186.	2.5	21
42	Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy. Talanta, 2016, 147, 460-467.	2.9	51
43	Non-invasive real-time monitoring of vineyard soils, berries and leaves with FT-NIR spectroscopy. BIO Web of Conferences, 2015, 5, 01003.	0.1	3
44	Use of Near-Infrared Spectroscopy for Coffee Beans Quality Assessment. , 2015, , 933-942.		3
45	Value Adding to Red Grape Pomace Exploiting Eco-friendly FT-NIR Spectroscopy Technique. Food and Bioprocess Technology, 2015, 8, 865-874.	2.6	15
46	FT-NIR spectroscopy as a tool for valorization of spent coffee grounds: Application to assessment of antioxidant properties. Food Research International, 2013, 51, 579-586.	2.9	59
47	A Review on the Applications of Portable Near-Infrared Spectrometers in the Agro-Food Industry. Applied Spectroscopy, 2013, 67, 1215-1233.	1.2	235
48	Flow-Injection Spectrophotometric Determination of Bromate in Bottled Drinking Water Samples Using Chlorpromazine Reagent and a Liquid Waveguide Capillary Cell. Analytical Sciences, 2013, 29, 563-570.	0.8	5
49	Review on recent applications of the liquid waveguide capillary cell in flow based analysis techniques to enhance the sensitivity of spectroscopic detection methods. Analytica Chimica Acta, 2012, 739, 1-13.	2.6	54
50	Spectrophotometric determination of zinc and copper in a multi-syringe flow injection analysis system using a liquid waveguide capillary cell: Application to natural waters. Talanta, 2011, 84, 1267-1272.	2.9	14
51	Spectrophotometric sensor system based on a liquid waveguide capillary cell for the determination of titanium: Application to natural waters, sunscreens and a lake sediment. Sensors and Actuators B: Chemical, 2011, 157, 51-56.	4.0	20
52	A multi-syringe flow injection system for the spectrophotometric determination of trace levels of iron in waters using a liquid waveguide capillary cell and different chelating resins and reaction chemistries. Microchemical Journal, 2009, 93, 153-158.	2.3	22
53	Sequential injection trace determination of iron in natural waters using a longâ€pathlength liquid core waveguide and different spectrophotometric chemistries. Limnology and Oceanography: Methods, 2009, 7, 795-802.	1.0	7
54	Activated sludge process monitoring through in situ near-infrared spectral analysis. Water Science and Technology, 2008, 57, 1643-1650.	1.2	22

#	Article	IF	CITATIONS
55	<i>In situ</i> near Infrared Monitoring of Activated Dairy Sludge Wastewater Treatment Processes. Journal of Near Infrared Spectroscopy, 2008, 16, 409-419.	0.8	18
56	Sequential Injection System for the Enzymatic Determination of Ethanol in Wine. Journal of Agricultural and Food Chemistry, 2006, 54, 19-23.	2.4	12