Chris S Sutherland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unifying population and landscape ecology with spatial capture–recapture. Ecography, 2018, 41, 444-456.	2.1	109
2	Modelling nonâ€Euclidean movement and landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution, 2015, 6, 169-177.	2.2	104
3	Spatial capture–recapture models allowing Markovian transience or dispersal. Population Ecology, 2016, 58, 53-62.	0.7	82
4	Fishing for mammals: Landscapeâ€level monitoring of terrestrial and semiâ€aquatic communities using eDNA from riverine systems. Journal of Applied Ecology, 2020, 57, 707-716.	1.9	79
5	A demographic, spatially explicit patch occupancy model of metapopulation dynamics and persistence. Ecology, 2014, 95, 3149-3160.	1.5	72
6	Estimating population density and connectivity of American minkÂusing spatial capture–recapture. Ecological Applications, 2016, 26, 1125-1135.	1.8	60
7	oSCR: a spatial capture–recapture R package for inference about spatial ecological processes. Ecography, 2019, 42, 1459-1469.	2.1	57
8	The enemy of my enemy is my friend: native pine marten recovery reverses the decline of the red squirrel by suppressing grey squirrel populations. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172603.	1.2	49
9	Multiâ€scale processes in metapopulations: contributions of stage structure, rescue effect, and correlated extinctions. Ecology, 2012, 93, 2465-2473.	1.5	40
10	Spatial Capture–Recapture: A Promising Method for Analyzing Data Collected Using Artificial Cover Objects. Herpetologica, 2016, 72, 6.	0.2	37
11	SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States. Ecology, 2021, 102, e03353.	1.5	36
12	Modelâ \in based estimators of density and connectivity to inform conservation of spatially structured populations. Ecosphere, 2017, 8, e01623.	1.0	34
13	A multiregion community model for inference about geographic variation in species richness. Methods in Ecology and Evolution, 2016, 7, 783-791.	2.2	33
14	Estimating density of secretive terrestrial birds (Siamese Fireback) in pristine and degraded forest using camera traps and distance sampling. Global Ecology and Conservation, 2015, 3, 596-606.	1.0	32
15	Likelihood analysis of spatial capture-recapture models for stratified or class structured populations. Ecosphere, 2015, 6, art22.	1.0	32
16	Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency. PLoS ONE, 2017, 12, e0185588.	1.1	32
17	Using Spatial Capture–Recapture to Elucidate Population Processes and Space-Use in Herpetological Studies. Journal of Herpetology, 2016, 50, 570-581. 	0.2	28
18	A local evaluation of the individual stateâ€space to scale up Bayesian spatial capture–recapture. Ecology and Evolution, 2019, 9, 352-363.	0.8	27

CHRIS S SUTHERLAND

#	Article	IF	CITATIONS
19	Application of the Random Encounter Model in citizen science projects to monitor animal densities. Remote Sensing in Ecology and Conservation, 2020, 6, 514-528.	2.2	25
20	Patterns of scat deposition by brown hyaenas Hyaena brunnea in a mountain savannah region of South Africa. Wildlife Biology, 2010, 16, 445-451.	0.6	22
21	Large-scale variation in density of an aquatic ecosystem indicator species. Scientific Reports, 2018, 8, 8958.	1.6	22
22	Accounting for false positive detection error induced by transient individuals. Wildlife Research, 2013, 40, 490.	0.7	21
23	Quantifying spatial variation in the size and structure of ecologically stratified communities. Methods in Ecology and Evolution, 2017, 8, 976-984.	2.2	21
24	Optimal sampling design for spatial capture–recapture. Ecology, 2021, 102, e03262.	1.5	21
25	Estimating occupancy probability of moose using hunter survey data. Journal of Wildlife Management, 2017, 81, 521-534.	0.7	20
26	A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. Ecography, 2020, 43, 75-84.	2.1	19
27	Reserve design to optimize functional connectivity and animal density. Conservation Biology, 2019, 33, 1023-1034.	2.4	18
28	A framework for transparent quantification of urban landscape gradients. Landscape Ecology, 2019, 34, 1219-1229.	1.9	17
29	Effectiveness of Panama as an intercontinental land bridge for large mammals. Conservation Biology, 2020, 34, 207-219.	2.4	16
30	Sexâ€specific population dynamics and demography of capercaillie (<i>Tetrao urogallus</i> L.) in a patchy environment. Population Ecology, 2020, 62, 80-90.	0.7	16
31	Abiotic stress and biotic factors mediate range dynamics on opposing edges. Journal of Biogeography, 2021, 48, 1758-1772.	1.4	16
32	Occupancy of Potential Overwintering Habitat on Protected Lands by Two Imperiled Snake Species in the Coastal Plain of the Southeastern United States. Journal of Herpetology, 2017, 51, 73-88.	0.2	14
33	Trends in cheetah <scp> <i>Acinonyx jubatus </i> </scp> density in northâ€central Namibia. Population Ecology, 2020, 62, 233-243.	0.7	14
34	Mesocarnivore community structuring in the presence of Africa's apex predator. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202379.	1.2	13
35	The value of considering demographic contributions to connectivity: a review. Ecography, 2022, 2022, .	2.1	13
36	Broad aggressive interactions among African carnivores suggest intraguild killing is driven by more than competition. Ecology, 2022, 103, e03600.	1.5	13

CHRIS S SUTHERLAND

#	Article	IF	CITATIONS
37	One Size Does Not Fit All: Relationships between Size of Family Forest Holdings and Owner Attitudes and Behaviors. Journal of Forestry, 2021, 119, 28-44.	0.5	12
38	Spatial capture–recapture analysis of artificial cover board survey data reveals small scale spatial variation in slow-worm Anguis fragilis density. Royal Society Open Science, 2017, 4, 170374.	1.1	11
39	American lobsters, <i> Homarus americanus,</i> use vision for initial opponent evaluation and subsequent memory. Bulletin of Marine Science, 2018, 94, 517-532.	0.4	11
40	Responses of carnivore assemblages to decentralized conservation approaches in a South African landscape. Journal of Applied Ecology, 2021, 58, 92-103.	1.9	11
41	Rhesus macaques compensate for reproductive delay following ecological adversity early in life. Ecology and Evolution, 2022, 12, e8456.	0.8	11
42	Potential influence of highâ€elevation wind farms on carnivore mobility. Journal of Wildlife Management, 2017, 81, 1505-1512.	0.7	10
43	An empirical demonstration of the effect of study design on density estimations. Scientific Reports, 2021, 11, 13104.	1.6	10
44	Experimental evaluation of spatial capture–recapture study design. Ecological Applications, 2021, 31, e02419.	1.8	9
45	Seasonal use of waterholes and pathways by macrofauna in the dry forest of Costa Rica. Journal of Tropical Ecology, 2019, 35, 68-73.	0.5	8
46	Socioeconomic drivers of urban pest prevalence. People and Nature, 2020, 2, 776-783.	1.7	8
47	Unexpected spatial population ecology of a widespread terrestrial salamander near its southern range edge. Royal Society Open Science, 2019, 6, 182192.	1.1	7
48	Fast, flexible alternatives to regular grid designs for spatial capture–recapture. Methods in Ecology and Evolution, 2021, 12, 298-310.	2.2	7
49	Improved inferences about landscape connectivity from spatial capture–recapture by integration of a movement model. Ecology, 2022, 103, e03544.	1.5	7
50	Landscape connectivity and population density of snow leopards across a multiâ€use landscape in Western Himalaya. Animal Conservation, 2022, 25, 414-426.	1.5	7
51	Forecasting species distributions: Correlation does not equal causation. Diversity and Distributions, 2022, 28, 756-769.	1.9	7
52	Visual Head Counts: A Promising Method for Efficient Monitoring of Diamondback Terrapins. Diversity, 2019, 11, 101.	0.7	6
53	High connectivity despite high fragmentation: iterated dispersal in a vertebrate metapopulation. , 2012, , 405-412.		6
54	A latent process model approach to improve the utility of indicator species. Oikos, 2020, 129, 1753-1762.	1.2	5

CHRIS S SUTHERLAND

#	Article	IF	CITATIONS
55	Defining dual-axis landscape gradients of human influence for studying ecological processes. PLoS ONE, 2021, 16, e0252364.	1.1	5
56	Habitat mediates coevolved but not novel species interactions. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212338.	1.2	5
57	The Use of Remote Camera Trapping to Study Cheetahs: Past Reflections and Future Directions. , 2018, , 415-425.		4
58	Landscape- and local-scale habitat influences on occurrence and detection probability of Clark's nutcrackers: Implications for conservation. PLoS ONE, 2020, 15, e0233726.	1.1	4
59	Differential habitat use by sympatric species of mouse lemurs across a mangrove–dry forest habitat gradient. Journal of Mammalogy, 0, , .	0.6	3
60	Estimating abundance. , 2016, , 388-401.		3
61	Estimating population density and connectivity of American mink using spatial capture-recapture. , 2015, , .		2
62	Principles of translational science education. Frontiers in Ecology and the Environment, 2019, 17, 82-84.	1.9	1
63	Corrigendum to: Differential habitat use by sympatric species of mouse lemurs across a mangrove–dry forest habitat gradient. Journal of Mammalogy, 2021, 102, 1443-1443.	0.6	0
64	Drivers of avian diversity and abundance across gradients of human influence. Landscape Ecology, 2022, 37, 969-981.	1.9	0
65	Warming increases activity in the common tropical frog Eleutherodactylus coqui. Climate Change Ecology, 2021, 2, 100041.	0.9	Ο