Chen-Chieh Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173549/publications.pdf

Version: 2024-02-01

		840776	940533
18	592	11	16
papers	citations	h-index	g-index
18	18	18	1168
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates. Journal of Colloid and Interface Science, 2016, 466, 80-90.	9.4	4
2	Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions. Nanoscale, 2016, 8, 3647-3659.	5.6	2
3	<i>Romantic Story or Raman Scattering?</i> Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering. Analytical Chemistry, 2015, 87, 6017-6024.	6.5	90
4	Incident angle–tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors. Nanoscale, 2015, 7, 3985-3996.	5.6	12
5	Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale, 2015, 7, 1667-1677.	5.6	43
6	White-Light-Induced Collective Heating of Gold Nanocomposite/ <i>Bombyx mori</i> Silk Thin Films with Ultrahigh Broadband Absorbance. ACS Nano, 2015, 9, 12045-12059.	14.6	42
7	Nanoimprint technology for patterning functional materials and its applications. Microelectronic Engineering, 2015, 132, 98-119.	2.4	65
8	Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nature Communications, 2014, 5, 3288.	12.8	165
9	Plasmonic nanoparticle-film calipers for rapid and ultrasensitive dimensional and refractometric detection. Analyst, The, 2014, 139, 5103-5111.	3.5	4
10	Rapidly characterize structural qualities of large-area graphene by optical anisotropy., 2013,,.		0
10		14.9	0 49
	Rapidly characterize structural qualities of large-area graphene by optical anisotropy., 2013,,. Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Lightâ€Emitting Diodes. Advanced Functional Materials, 2013, 23,	14.9 3.1	
11	Rapidly characterize structural qualities of large-area graphene by optical anisotropy., 2013,,. Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Lightâ∈Emitting Diodes. Advanced Functional Materials, 2013, 23, 1412-1421. Dependence of Nanocrystal Dimensionality on the Polymer Nanomorphology, Anisotropic Optical Absorption, and Carrier Transport in P3HT:TiO ₂ Bulk Heterojunctions. Journal of Physical		49
11 12	Rapidly characterize structural qualities of large-area graphene by optical anisotropy. , 2013, , . Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Lightâ∈Emitting Diodes. Advanced Functional Materials, 2013, 23, 1412-1421. Dependence of Nanocrystal Dimensionality on the Polymer Nanomorphology, Anisotropic Optical Absorption, and Carrier Transport in P3HT:TiO ₂ Bulk Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 25081-25088. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic		10
11 12 13	Rapidly characterize structural qualities of large-area graphene by optical anisotropy., 2013, , . Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Lightâ€Emitting Diodes. Advanced Functional Materials, 2013, 23, 1412-1421. Dependence of Nanocrystal Dimensionality on the Polymer Nanomorphology, Anisotropic Optical Absorption, and Carrier Transport in P3HT:TiO⟨sub⟩2⟨/sub⟩ Bulk Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 25081-25088. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects., 2012, , . Broadband and wide angle antireflection of sub-20 nm GaAs nanograss. Energy and Environmental	3.1	49100
11 12 13	Rapidly characterize structural qualities of large-area graphene by optical anisotropy., 2013, , . Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Lightâ∈Emitting Diodes. Advanced Functional Materials, 2013, 23, 1412-1421. Dependence of Nanocrystal Dimensionality on the Polymer Nanomorphology, Anisotropic Optical Absorption, and Carrier Transport in P3HT:TiO ₂ Bulk Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 25081-25088. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects., 2012, , . Broadband and wide angle antireflection of sub-20 nm GaAs nanograss. Energy and Environmental Science, 2012, 5, 7601. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects. Biosensors and	3.1	49 10 0 25
11 12 13 14	Rapidly characterize structural qualities of large-area graphene by optical anisotropy. , 2013, , . Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Lightâ€Emitting Diodes. Advanced Functional Materials, 2013, 23, 1412-1421. Dependence of Nanocrystal Dimensionality on the Polymer Nanomorphology, Anisotropic Optical Absorption, and Carrier Transport in P3HT:TiO⟨sub⟩2⟨/sub⟩ Bulk Heterojunctions. Journal of Physical Chemistry C, 2012, 116, 25081-25088. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects. , 2012, , . Broadband and wide angle antireflection of sub-20 nm GaAs nanograss. Energy and Environmental Science, 2012, 5, 7601. Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects. Biosensors and Bioelectronics, 2012, 33, 267-273. Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties. Energy and	30.8	49 10 0 25