
Costanza Argiroffi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-stationary dynamo and magnetospheric accretion processes of the classical T Tauri star V2129 Oph. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2454-2468.	4.4	95
2	X-ray emission from MP Muscae: an old classical T Tauri star. Astronomy and Astrophysics, 2007, 465, L5-L8.	5.1	78
3	A stellar flareâ^'coronal mass ejection event revealed by X-ray plasma motions. Nature Astronomy, 2019, 3, 742-748.	10.1	72
4	The close classical T Tauri binary V4046 Sgr: complex magnetic fields and distributed mass accretion. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1747-1759.	4.4	63
5	X-ray emitting MHD accretion shocks in classical T Tauri stars. Astronomy and Astrophysics, 2010, 510, A71.	5.1	62
6	Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs. Astronomy and Astrophysics, 2011, 526, A104.	5.1	53
7	X-ray emission from dense plasma in classical T Tauri stars: hydrodynamic modeling of the accretion shock. Astronomy and Astrophysics, 2008, 491, L17-L20.	5.1	53
8	On the observability of T Tauri accretion shocks in the X-ray band. Astronomy and Astrophysics, 2010, 522, A55.	5.1	52
9	Collisionless shock heating of heavy ions in SN 1987A. Nature Astronomy, 2019, 3, 236-241.	10.1	39
10	Variable X-ray emission from the accretion shock in the classical T Tauri star V2129ÂOphiuchi. Astronomy and Astrophysics, 2011, 530, A1.	5.1	38
11	Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars. Astronomy and Astrophysics, 2013, 559, A127.	5.1	36
12	Laboratory unraveling of matter accretion in young stars. Science Advances, 2017, 3, e1700982.	10.3	35
13	Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei. Astronomy and Astrophysics, 2016, 589, A113.	5.1	35
14	YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission. Astronomy and Astrophysics, 2013, 557, A69.	5.1	34
15	Simultaneous <i>Kepler</i> /K2 and <i>XMM-Newton</i> observations of superflares in the Pleiades. Astronomy and Astrophysics, 2019, 622, A210.	5.1	32
16	THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr: ROTATIONALLY MODULATED X-RAY EMISSION FROM ACCRETION SHOCKS. Astrophysical Journal, 2012, 752, 100.	4.5	31
17	XMM-Newton spectroscopy of the metal depleted T Tauri star TWA 5. Astronomy and Astrophysics, 2005, 439, 1149-1158.	5.1	27
18	Highâ€Resolution Xâ€Ray Spectroscopy of the Post–T Tauri Star PZ Telescopii. Astrophysical Journal, 2004, 609, 925-934.	4.5	26

COSTANZA ARGIROFFI

#	Article	IF	CITATIONS
19	On coronal structures and their variability in active stars: The case of Capella observed with Chandra/LETGS. Astronomy and Astrophysics, 2003, 404, 1033-1049.	5.1	26
20	GSC 07396-00759 = V4046 Sgr C[D]: A WIDE-SEPARATION COMPANION TO THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr AB. Astrophysical Journal Letters, 2011, 740, L17.	8.3	25
21	Magnetohydrodynamic Modeling of the Accretion Shocks in Classical T Tauri Stars: The Role of Local Absorption in the X-Ray Emission. Astrophysical Journal Letters, 2014, 795, L34.	8.3	25
22	X-ray optical depth diagnostics of T Tauri accretion shocks. Astronomy and Astrophysics, 2009, 507, 939-948.	5.1	25
23	M STARS IN THE TW HYA ASSOCIATION: STELLAR X-RAYS AND DISK DISSIPATION. Astronomical Journal, 2016, 152, 3.	4.7	23
24	Redshifted X-rays from the material accreting onto TW Hydrae: Evidence of a low-latitude accretion spot. Astronomy and Astrophysics, 2017, 607, A14.	5.1	21
25	The enigmatic young brown dwarf binary FU Tau: accretion and activity. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1095-1102.	4.4	16
26	New view of the corona of classical T Tauri stars: Effects of flaring activity in circumstellar disks. Astronomy and Astrophysics, 2019, 624, A50.	5.1	16
27	Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars. Astronomy and Astrophysics, 2008, 490, 601-612.	5.1	16
28	Hydrodynamic modelling of accretion impacts in classical T Tauri stars: radiative heating of the pre-shock plasma. Astronomy and Astrophysics, 2017, 597, A1.	5.1	15
29	CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. Astronomy and Astrophysics, 2017, 602, A10.	5.1	14
30	Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines. Astronomy and Astrophysics, 2016, 594, A93.	5.1	13
31	The large-scale magnetic field of the eccentric pre-main-sequence binary system V1878 Ori. Monthly Notices of the Royal Astronomical Society, 2020, 497, 632-642.	4.4	11
32	Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments. Astronomy and Astrophysics, 2021, 648, A81.	5.1	10
33	XMM-Newton survey of two upper Scorpius regions. Astronomy and Astrophysics, 2006, 459, 199-213.	5.1	10
34	The flaring and quiescent components of the solar corona. Astronomy and Astrophysics, 2008, 488, 1069-1077.	5.1	9
35	Effects of radiation in accretion regions of classical T Tauri stars. Astronomy and Astrophysics, 2019, 629, L9.	5.1	7
36	Laboratory evidence for an asymmetric accretion structure upon slanted matter impact in young stars. Astronomy and Astrophysics, 2020, 642, A38.	5.1	7

3

#	Article	IF	CITATIONS
37	The Voyage of Metals in the Universe from Cosmological to Planetary Scales: the need for a Very High-Resolution, High Throughput Soft X-ray Spectrometer. Experimental Astronomy, 2021, 51, 1013-1041.	3.7	5
38	Highâ€energy emission and its variability in young stellar objects. Astronomische Nachrichten, 2019, 340, 284-289.	1.2	4
39	The GAPS programme at TNG. Astronomy and Astrophysics, 2020, 642, A53.	5.1	4
40	The magnetosphere of the close accreting PMS binary V4046 Sgr. EPJ Web of Conferences, 2014, 64, 08009.	0.3	2
41	3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects. Proceedings of the International Astronomical Union, 2013, 9, 66-69.	0.0	1
42	The magnetosphere of the close accreting PMS binary V4046 Sgr AB. Proceedings of the International Astronomical Union, 2013, 9, 44-45.	0.0	1
43	3D numerical modeling of YSO accretion shocks. EPJ Web of Conferences, 2014, 64, 04003.	0.3	1
44	Mass Accretion Impacts in Classical T Tauri Stars: A Multi-disciplinary Approach. Thirty Years of Astronomical Discovery With UKIRT, 2019, , 43-48.	0.3	1
45	Modeling X-ray emission from stellar coronae. , 2009, , .		0
46	The Sun as a benchmark of flaring activity in stellar coronae. , 2009, , .		0
47	Accretion shock on CTTSs and its X-ray emission. , 2009, , .		0
48	V4046 Sgr: X-rays from accretion shock. Proceedings of the International Astronomical Union, 2013, 9, 46-47.	0.0	0
49	X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption. Proceedings of the International Astronomical Union, 2013, 9, 48-49.	0.0	0
50	Activity and Rotation in the Young Cluster h Per. Proceedings of the International Astronomical Union, 2013, 9, 102-105.	0.0	0
51	High Energy Emission from Shocks Due to Jets and Accretion in Young Stars with Disks: Combining Observations, Numerical Models, and Laboratory Experiments. Thirty Years of Astronomical Discovery With LIKIRT 2019 49-52	0.3	Ο