Claudio Mussolino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human TÂcells and hematopoietic stem and progenitor cells using base editing. Molecular Therapy, 2022, 30, 130-144.	8.2	23
2	HIV Gene Therapy: An Update. Human Gene Therapy, 2021, 32, 52-65.	2.7	13
3	Preclinical Evaluation of a Novel TALEN Targeting <i>CCR5</i> Confirms Efficacy and Safety in Conferring Resistance to HIVâ€l Infection. Biotechnology Journal, 2021, 16, e2000023.	3.5	18
4	Automated generation of gene-edited CAR TÂcells at clinical scale. Molecular Therapy - Methods and Clinical Development, 2021, 20, 379-388.	4.1	33
5	Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell, 2021, 28, 1136-1147.e5.	11.1	95
6	Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Frontiers in Genome Editing, 2021, 3, 618111.	5.2	12
7	Spotlight on gene therapy in Germany. Gene Therapy, 2021, 28, 471-472.	4.5	0
8	Gene Therapy "Made in Germany― A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Human Gene Therapy, 2021, 32, 987-996.	2.7	3
9	DNA Damage: From Threat to Treatment. Cells, 2020, 9, 1665.	4.1	99
10	A versatile reporter system for multiplexed screening of effective epigenome editors. Nature Protocols, 2020, 15, 3410-3440.	12.0	2
11	Genome Editing of the SNAI1 Gene in Rhabdomyosarcoma: A Novel Model for Studies of Its Role. Cells, 2020, 9, 1095.	4.1	5
12	Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors. International Journal of Molecular Sciences, 2020, 21, 795.	4.1	10
13	TALEN mediated gene editing in a mouse model of Fanconi anemia. Scientific Reports, 2020, 10, 6997.	3.3	3
14	Inhibition of replication of hepatitis B virus using transcriptional repressors that target the viral DNA. BMC Infectious Diseases, 2019, 19, 802.	2.9	15
15	Genome Editing in Transfusion Medicine. Stem Cells and Development, 2019, 28, 714-714.	2.1	0
16	Correction of IVS I-110(G>A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica, 2019, 104, e497-e501.	3.5	32
17	Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA. Methods in Molecular Biology, 2019, 1961, 45-66.	0.9	3
18	Gene Therapy Getting Personal: Mutation-Specific Editing and Gene Addition Strategies for β-Thalassaemia. Hemoglobin, 2019, 43, 330-330.	0.8	0

CLAUDIO MUSSOLINO

#	Article	IF	CITATIONS
19	The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. Journal of Clinical Medicine, 2019, 8, 1959.	2.4	9
20	Generation of TALE-Based Designer Epigenome Modifiers. Methods in Molecular Biology, 2018, 1767, 89-109.	0.9	5
21	Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Research, 2018, 46, 4456-4468.	14.5	63
22	Delivery of Designer Epigenome Modifiers into Primary Human T Cells. Methods in Molecular Biology, 2018, 1767, 189-203.	0.9	3
23	Precise Epigenome Editing on the Stage: A Novel Approach to Modulate Gene Expression. Epigenetics Insights, 2018, 11, 251686571881883.	2.0	7
24	A Highly Efficient and GMP Compliant Protocol to Manufacture CCR5 Edited Cells to Treat HIV Infection. Blood, 2018, 132, 5795-5795.	1.4	0
25	Refining strategies to translate genome editing to the clinic. Nature Medicine, 2017, 23, 415-423.	30.7	213
26	Targeted genome editing restores T cell differentiation in a humanized X-SCID pluripotent stem cell disease model. Scientific Reports, 2017, 7, 12475.	3.3	9
27	Genome and Epigenome Editing to Treat Disorders of the Hematopoietic System. Human Gene Therapy, 2017, 28, 1105-1115.	2.7	20
28	Traceless Targeting and Isolation of Gene-Edited Immortalized Keratinocytes from Epidermolysis Bullosa Simplex Patients. Molecular Therapy - Methods and Clinical Development, 2017, 6, 112-123.	4.1	40
29	TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Scientific Reports, 2017, 7, 15195.	3.3	22
30	Designer Effectors for Editing and Regulating Complex Genomes. , 2017, , 137-157.		0
31	Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase. Scientific Reports, 2016, 6, 38198.	3.3	29
32	325. Targeted Gene Addition Strategies for the Treatment of X-Linked Lymphoproliferative Disease. Molecular Therapy, 2016, 24, S130-S131.	8.2	0
33	692. Genome Editing for Personalized Gene Therapy of IVSI-110 Beta-Thalassemia. Molecular Therapy, 2016, 24, S274.	8.2	1
34	Targeted gene addition strategies for the treatment of X-linked lymphoproliferative disease. Lancet, The, 2016, 387, S21.	13.7	0
35	Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Molecular Therapy, 2016, 24, 636-644.	8.2	204
36	The Use and Development of TAL Effector Nucleases. Advances in Experimental Medicine and Biology, 2016, , 29-50.	1.6	1

CLAUDIO MUSSOLINO

#	Article	IF	CITATIONS
37	118. Inhibition of Hepatitis B Virus Replication In Vivo Following Delivery of Antiviral TALENs With Recombinant Adeno-Associated Viral Vectors. Molecular Therapy, 2015, 23, S49.	8.2	Ο
38	125. Engineered Nucleases-Mediated In Situ Correction of a Genetic Defect By Homologous Recombination Into the Native Locus. Molecular Therapy, 2015, 23, S51-S52.	8.2	0
39	483. Epigenetic Silencing of Hepatitis B cccDNA In Vitro and In Vivo Using AAV-Delivered Engineered Repressor Transcription Activator-Like Effector. Molecular Therapy, 2015, 23, S192.	8.2	2
40	Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genetics, 2015, 11, e1005239.	3.5	17
41	Transcription Activator-Like Effector (TALE) Nucleases and Repressor TALEs for Antiviral Gene Therapy. Current Stem Cell Reports, 2015, 1, 1-8.	1.6	9
42	Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130.	1.6	25
43	Proven and novel strategies for efficient editing of the human genome. Current Opinion in Pharmacology, 2015, 24, 105-112.	3.5	18
44	TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Research, 2014, 42, 6762-6773.	14.5	165
45	Inactivation of Hepatitis B Virus Replication in Cultured Cells and In Vivo with Engineered Transcription Activator-Like Effector Nucleases. Molecular Therapy, 2013, 21, 1889-1897.	8.2	191
46	RNA guides genome engineering. Nature Biotechnology, 2013, 31, 208-209.	17.5	70
47	Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Research, 2013, 41, e63-e63.	14.5	246
48	Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Research, 2012, 40, 5560-5568.	14.5	160
49	TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 2012, 23, 644-650.	6.6	188
50	On target? Tracing zinc-finger-nuclease specificity. Nature Methods, 2011, 8, 725-726.	19.0	35
51	Zincâ€fingerâ€based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Molecular Medicine, 2011, 3, 118-128.	6.9	72
52	A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research, 2011, 39, 9283-9293.	14.5	648
53	Novel Adeno-Associated Virus Serotypes Efficiently Transduce Murine Photoreceptors. Journal of Virology, 2007, 81, 11372-11380.	3.4	210
54	Inhibition of Ocular Neovascularization by Hedgehog Blockade. Molecular Therapy, 2006, 13, 573-579.	8.2	44

#	Article	IF	CITATIONS
55	Quantitative Evaluation of Chromosomal Rearrangements in Primary Gene-Edited Human Stem Cells by Preclinical CAST-Seq. SSRN Electronic Journal, 0, , .	0.4	7