Huifang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81735/publications.pdf

Version: 2024-02-01

567281 580821 25 983 15 25 h-index citations g-index papers 25 25 25 1650 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment. IScience, 2022, 25, 103639.	4.1	17
2	Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomaterialia, 2022, 140, 302-313.	8.3	32
3	Improving the Therapeutic Efficiency of Hypoxic-Activated Prodrugs by Enhancing Hypoxia in Solid Tumors. ACS Biomaterials Science and Engineering, 2022, 8, 1604-1612.	5.2	4
4	Microbial hydrogen "manufactory―for enhanced gas therapy and self-activated immunotherapy via reduced immune escape. Journal of Nanobiotechnology, 2022, 20, .	9.1	3
5	Self-Propelled and Near-Infrared-Phototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS Nano, 2021, 15, 1100-1110.	14.6	48
6	Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors. Nano Research, 2021, 14, 667-673.	10.4	35
7	Cerium oxide nanoparticles promote proliferation of primary osteoblasts via cell cycle machinery in vitro. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	4
8	Traceable metallic antigen release for enhanced cancer immunotherapy. Journal of Nanoparticle Research, 2021, 23, 130.	1.9	2
9	Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Osteoblast Adhesion and Guided Bone Regeneration. ACS Applied Bio Materials, 2021, 4, 8049-8059.	4.6	10
10	Biomimetic Platform Based on Mesoporous Platinum for Multisynergistic Cancer Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 5154-5164.	5.2	2
11	Prodrug-Based Nanoreactors with Tumor-Specific <i>In Situ</i> li> Activation for Multisynergistic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34667-34677.	8.0	29
12	Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. ACS Nano, 2019, 13, 7556-7567.	14.6	130
13	Mesoporous Platinum Nanotherapeutics for Combined Chemo-photothermal Cancer Treatment. ACS Applied Bio Materials, 2019, 2, 3269-3278.	4.6	10
14	Two-photon fluorescent probe for hypoxic cancer stem cells by responding to endogenous nitroreductase. Analytical Methods, 2019, 11, 421-426.	2.7	13
15	Porous Organic Polymer-Coated Band-Aids for Phototherapy of Bacteria-Induced Wound Infection. ACS Applied Bio Materials, 2019, 2, 613-618.	4.6	21
16	Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(L-lactic acid) scaffolds for bone defect repair. International Journal of Nanomedicine, 2018, Volume 13, 1707-1721.	6.7	81
17	Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance. NPG Asia Materials, 2018, 10, 373-384.	7.9	27
18	A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials, 2017, 122, 23-33.	11.4	145

Huifang Liu

#	ARTICLE	IF	CITATIONS
19	Europium-Doped Gd ₂ O ₃ Nanotubes Increase Bone Mineral Density in Vivo and Promote Mineralization in Vitro. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5784-5792.	8.0	19
20	Oxidative stress-induced apoptosis of osteoblastic MC3T3-E1 cells by hydroxyapatite nanoparticles through lysosomal and mitochondrial pathways. RSC Advances, 2017, 7, 13010-13018.	3.6	37
21	Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. NPG Asia Materials, 2017, 9, e365-e365.	7.9	65
22	Up-Conversion Y ₂ O ₃ :Yb ³⁺ ,Er ³⁺ Hollow Spherical Drug Carrier with Improved Degradability for Cancer Treatment. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25078-25086.	8.0	39
23	In vivo biodistribution and toxicity of Gd ₂ O ₃ :Eu ³⁺ nanotubes in mice after intraperitoneal injection. RSC Advances, 2015, 5, 73601-73611.	3.6	12
24	Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite. ACS Nano, 2015, 9, 9614-9625.	14.6	183
25	Biodistribution and toxicity assessment of europium-doped Gd2O3 nanotubes in mice after intraperitoneal injection. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	15