Yu-Sheng Hsiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173078/publications.pdf

Version: 2024-02-01

79 papers 3,589 citations

30 h-index 138484 58 g-index

80 all docs 80 docs citations

80 times ranked 5825 citing authors

#	Article	IF	CITATIONS
1	Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano, 2011, 5, 959-967.	14.6	959
2	Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chemical Engineering Journal, 2017, 314, 347-357.	12.7	208
3	High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film for use in ITO-free polymer solar cells. Journal of Materials Chemistry, 2008, 18, 5948.	6.7	157
4	Graphene-based thermoplastic composites and their application for LED thermal management. Carbon, 2016, 102, 66-73.	10.3	157
5	Improving the Light Trapping Efficiency of Plasmonic Polymer Solar Cells through Photon Management. Journal of Physical Chemistry C, 2012, 116, 20731-20737.	3.1	122
6	Imprinted NanoVelcro Microchips for Isolation and Characterization of Circulating Fetal Trophoblasts: Toward Noninvasive Prenatal Diagnostics. ACS Nano, 2017, 11, 8167-8177.	14.6	68
7	Three-dimensional carbon nanotube based polymer composites for thermal management. Composites Part A: Applied Science and Manufacturing, 2016, 90, 678-686.	7.6	65
8	Facile preparation of WO 3 /PEDOT:PSS composite for inkjet printed electrochromic window and its performance for heat shielding. Dyes and Pigments, 2018, 148, 465-473.	3.7	64
9	3D Bioelectronic Interface: Capturing Circulating Tumor Cells onto Conducting Polymerâ€Based Micro/Nanorod Arrays with Chemical and Topographical Control. Small, 2014, 10, 3012-3017.	10.0	61
10	Ternary composite based on homogeneous Ni(OH)2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor. Chemical Engineering Journal, 2018, 334, 2058-2067.	12.7	61
11	Morphology Evolution of Spin-Coated Films of Poly(thiopheneâ°) phenyleneâ° thiophene) and [6,6]-Phenyl-C ₇₁ -butyric Acid Methyl Ester by Solvent Effect. Macromolecules, 2010, 43, 3399-3405.	4.8	57
12	Interfacial engineering of melamine sponges using hydrophobic TiO 2 nanoparticles for effective oil/water separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 476-483.	5.3	56
13	Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9275-9284.	8.0	56
14	Morphological control of CuPc and its application in organic solar cells. Nanotechnology, 2008, 19, 415603.	2.6	54
15	Clearance of low molecular-weight uremic toxins p-cresol, creatinine, and urea from simulated serum by adsorption. Journal of Molecular Liquids, 2018, 252, 203-210.	4.9	47
16	Manipulating location, polarity, and outgrowth length of neuron-like pheochromocytoma (PC-12) cells on patterned organic electrode arrays. Lab on A Chip, 2011, 11, 3674.	6.0	46
17	Molecular Recognition Enables Nanosubstrate-Mediated Delivery of Gene-Encapsulated Nanoparticles with High Efficiency. ACS Nano, 2014, 8, 4621-4629.	14.6	46
18	Integrated 3D conducting polymer-based bioelectronics for capture and release of circulating tumor cells. Journal of Materials Chemistry B, 2015, 3, 5103-5110.	5.8	46

#	Article	IF	CITATIONS
19	Efficient ternary bulk heterojunction solar cells based on small molecules only. Journal of Materials Chemistry A, 2015, 3, 10512-10518.	10.3	45
20	Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics. Thin Solid Films, 2008, 516, 4258-4266.	1.8	44
21	Fullerene C 70 decorated TiO 2 nanowires for visible-light-responsive photocatalyst. Applied Surface Science, 2015, 355, 536-546.	6.1	44
22	The investigation of donor-acceptor compatibility in bulk-heterojunction polymer systems. Applied Physics Letters, 2013, 103, .	3.3	43
23	Random and aligned electrospun PLGA nanofibers embedded in microfluidic chips for cancer cell isolation and integration with air foam technology for cell release. Journal of Nanobiotechnology, 2019, 17, 31.	9.1	41
24	All-solution-processed inverted polymer solar cells on granular surface-nickelized polyimide. Organic Electronics, 2009, 10, 551-561.	2.6	40
25	Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43843-43856.	8.0	40
26	Poly(3,4-ethylenedioxythiophene)-Based Nanofiber Mats as an Organic Bioelectronic Platform for Programming Multiple Capture/Release Cycles of Circulating Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30329-30342.	8.0	39
27	Thermally conductive polymeric composites incorporating 3D MWCNT/PEDOT:PSS scaffolds. Composites Part B: Engineering, 2018, 136, 46-54.	12.0	39
28	Glycan Stimulation Enables Purification of Prostate Cancer Circulating Tumor Cells on PEDOT NanoVelcro Chips for RNA Biomarker Detection. Advanced Healthcare Materials, 2018, 7, 1700701.	7.6	38
29	Poly(3,4â€ethylenedioxythiophene) Polymer Composite Bioelectrodes with Designed Chemical and Topographical Cues to Manipulate the Behavior of PC12 Neuronal Cells. Advanced Materials Interfaces, 2019, 6, 1801576.	3.7	34
30	Surface modification of Ni(OH)2 nanosheets with PEDOT:PSS for supercapacitor and bendable electrochromic applications. Solar Energy Materials and Solar Cells, 2019, 195, 1-11.	6.2	33
31	Facile Synthesis of Diamino-Modified Graphene/Polyaniline Semi-Interpenetrating Networks with Practical High Thermoelectric Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4946-4952.	8.0	30
32	Co2+-Doped BiOBrxCl1-x hierarchical microspheres display enhanced visible-light photocatalytic performance in the degradation of rhodamine B and antibiotics and the inactivation of E. coli. Journal of Hazardous Materials, 2021, 402, 123457.	12.4	30
33	Sensitive Detection of Sweat Cortisol Using an Organic Electrochemical Transistor Featuring Nanostructured Poly(3,4-Ethylenedioxythiophene) Derivatives in the Channel Layer. Analytical Chemistry, 2022, 94, 7584-7593.	6.5	30
34	Correlation between Exciton Lifetime Distribution and Morphology of Bulk Heterojunction Films after Solvent Annealing. Journal of Physical Chemistry C, 2010, 114, 9062-9069.	3.1	29
35	Electrodes: Multifunctional Graphene–PEDOT Microelectrodes for On hip Manipulation of Human Mesenchymal Stem Cells (Adv. Funct. Mater. 37/2013). Advanced Functional Materials, 2013, 23, 4648-4648.	14.9	29
36	Few-layer graphene based sponge as a highly efficient, recyclable and selective sorbent for organic solvents and oils. RSC Advances, 2015, 5, 53741-53748.	3 . 6	28

#	Article	IF	Citations
37	Enhanced electrochromic performance of carbon-coated V2O5 derived from a metal–organic framework. Applied Surface Science, 2021, 542, 148498.	6.1	28
38	High-performance, robust, stretchable organic photovoltaics using commercially available tape as a deformable substrate. Solar Energy Materials and Solar Cells, 2017, 165, 111-118.	6.2	26
39	Facile Transfer Method for Fabricating Light-Harvesting Systems for Polymer Solar Cells. Journal of Physical Chemistry C, 2011, 115, 11864-11870.	3.1	25
40	Doping with W6+ ions enhances the performance of TiNb2O7 as an anode material for lithium-ion batteries. Applied Surface Science, 2022, 573, 151517.	6.1	25
41	Nanoscale Correlation between Exciton Dissociation and Carrier Transport in Silole-Containing Cyclopentadithiophene-Based Bulk Heterojunction Films. Journal of Physical Chemistry C, 2011, 115, 2398-2405.	3.1	24
42	Molecular-weight-dependent nanoscale morphology in silole-containing cyclopentadithiophene polymer and fullerene derivative blends. Organic Electronics, 2011, 12, 1755-1762.	2.6	23
43	Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries. Ceramics International, 2018, 44, 23063-23072.	4.8	23
44	PEDOT-modified laser-scribed graphene films as bginder– and metallic current collector–free electrodes for large-sized supercapacitors. Applied Surface Science, 2020, 518, 146193.	6.1	23
45	Electrochemical Polymerization of PEDOT–Graphene Oxide–Heparin Composite Coating for Anti-fouling and Anti-clotting of Cardiovascular Stents. Polymers, 2019, 11, 1520.	4.5	22
46	Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes. Separation and Purification Technology, 2020, 245, 116884.	7.9	22
47	Electrically tunable organic bioelectronics for spatial and temporal manipulation of neuron-like pheochromocytoma (PC-12) cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4321-4328.	2.4	20
48	Microwave-assisted synthesis of TiO2/WS2 heterojunctions with enhanced photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 489-498.	5.3	20
49	Spray-drying synthesis of Li4Ti5O12 microspheres in pilot scale using TiO2 nanosheets as starting materials and their application in high-rate lithium ion battery. Journal of Alloys and Compounds, 2019, 773, 376-386.	5.5	20
50	Selective growth and enhanced field emission properties of micropatterned iron phthalocyanine nanofiber arrays. Organic Electronics, 2011, 12, 1826-1834.	2.6	19
51	Organic Electrochemical Transistors/SERS-Active Hybrid Biosensors Featuring Gold Nanoparticles Immobilized on Thiol-Functionalized PEDOT Films. Frontiers in Chemistry, 2019, 7, 281.	3.6	19
52	High-performance Li-lon capacitor constructed from biomass-derived porous carbon and high-rate Li4Ti5O12. Applied Surface Science, 2021, 543, 148717.	6.1	19
53	Spray-dried nanoporous NiO/PANI:PSS composite microspheres for high-performance asymmetric supercapacitors. Composites Part B: Engineering, 2019, 175, 107066.	12.0	18
54	The effect of wetting property on electrochromic properties offunctionalized poly(3,4-ethylenedioxythiophene) films. Dyes and Pigments, 2017, 145, 95-102.	3.7	17

#	Article	IF	CITATIONS
55	Performance of chromophore-type electrochromic devices employing indium tin oxide nanorod optical amplification. Solar Energy Materials and Solar Cells, 2012, 98, 191-197.	6.2	15
56	Conductive PProDOT-Me2–capped Li4Ti5O12 microspheres with an optimized Ti3+/Ti4+ ratio for enhanced and rapid lithium-ion storage. Ceramics International, 2019, 45, 15252-15261.	4.8	14
57	Low-temperature formation of self-assembled 1,5-diaminoanthraquinone nanofibers: Substrate effects and field emission characteristics. Organic Electronics, 2011, 12, 686-693.	2.6	13
58	Dual-color electrochromic films incorporating a periodic polymer nanostructure. RSC Advances, 2012, 2, 4746.	3.6	13
59	Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer. Solar Energy Materials and Solar Cells, 2016, 150, 43-50.	6.2	13
60	MWCNT-embedded Li4Ti5O12 microspheres interfacially modified with polyaniline as ternary composites for high-performance lithium ion battery anodes. Ceramics International, 2020, 46, 6801-6810.	4.8	11
61	Phase and morphology control in the synthesis of Co3O4 nanosphere/α-Co(OH)2 nanosheet hybrids for application in supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110, 163-172.	5.3	11
62	Investigation of the growth of focal adhesions using protein nanoarrays fabricated by nanocontact printing using size tunable polymeric nanopillars. Nanotechnology, 2011, 22, 265302.	2.6	10
63	Controlling vertical alignment of phthalocyanine nanofibers on transparent graphene-coated ITO electrodes for organic field emitters. Journal of Materials Chemistry, 2012, 22, 7837.	6.7	10
64	Facile Fabrication of Microwrinkled Poly(3,4-Ethylenedioxythiophene) Films that Promote Neural Differentiation under Electrical Stimulation. ACS Applied Bio Materials, 2021, 4, 2354-2362.	4.6	10
65	High-performance supercapacitor based on a ternary nanocomposites of NiO, polyaniline, and Ni/NiO-decorated MWCNTs. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104318.	5.3	10
66	Dual-Gate Enhancement of the Sensitivity of miRNA Detection of a Solution-Gated Field-Effect Transistor Featuring a Graphene Oxide/Graphene Layered Structure. ACS Applied Electronic Materials, 2021, 3, 4300-4307.	4.3	9
67	Rational design of a highly porous electronic scaffold with concurrent enhancement in cell behaviors and differentiation under electrical stimulation. Journal of Materials Chemistry B, 2021, 9, 7674-7685.	5.8	9
68	Multifunctional Graphene–PEDOT Microelectrodes for Onâ€Chip Manipulation of Human Mesenchymal Stem Cells. Advanced Functional Materials, 2013, 23, 4649-4656.	14.9	8
69	Nitroanilines enhancing the holographic data storage characteristics of the 9,10â€phenanthrenequinoneâ€doped poly(methyl methacrylate) photopolymer. Journal of Applied Polymer Science, 2013, 127, 643-650.	2.6	7
70	Preparation of porous phosphine oxide-incorporated polymer membranes for selective removal of p-cresol from simulated serum: A preliminary study. Journal of the Taiwan Institute of Chemical Engineers, 2020, 107, 1-14.	5.3	6
71	Porous cellulose acetate mixed-matrix membrane adsorbents for efficient clearance of p-cresol and creatinine from synthetic serum. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104199.	5.3	6
72	A multifunctional ligand for defect passivation of perovskite film realizes air-stable perovskite solar cells with efficiencies exceeding 20%. Sustainable Energy and Fuels, 2022, 6, 1950-1958.	4.9	6

#	Article	IF	CITATIONS
73	Nonsolvent-induced phase separation preparation of porous TOPO-mixed polyethersulfone membranes for selective clearance of p-cresol from simulated serum. Separation and Purification Technology, 2022, 290, 120911.	7.9	6
74	Microfluidic organic bioelectronic chips for efficient isolation of trophoblast cells using a combination of rational catenation and electrically controllable refining. Materials Chemistry and Physics, 2022, 285, 126164.	4.0	6
75	Self-assembled coronene nanofiber arrays: toward integrated organic bioelectronics for efficient isolation, detection, and recovery of cancer cells. RSC Advances, 2017, 7, 36765-36776.	3.6	4
76	RNA Biomarkers: Glycan Stimulation Enables Purification of Prostate Cancer Circulating Tumor Cells on PEDOT NanoVelcro Chips for RNA Biomarker Detection (Adv. Healthcare Mater. 3/2018). Advanced Healthcare Materials, 2018, 7, 1870013.	7.6	3
77	Humidity-switch chromism of aniline-pentamer in Nafion. Journal of Polymer Research, 2016, 23, 1.	2.4	1
78	Nanofibers: Poly(3,4-ethylenedioxythiophene) Polymer Composite Bioelectrodes with Designed Chemical and Topographical Cues to Manipulate the Behavior of PC12 Neuronal Cells (Adv. Mater.) Tj ETQq0 0 0) rg £17 /Ov	erlack 10 Tf 5
79	Design and fabrication of electrospun mixed-matrix multi-layered membranes containing tri-n-octylphosphine oxide for efficient adsorption of p-cresol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127192.	4.7	1