
Jackson Nkoh Nkoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laboratory studies on the effect of adsorbed microbial extracellular polymeric substances on the acidity of selected variableâ€charge soils. Soil Science Society of America Journal, 2022, 86, 162-180.	2.2	12
2	Adsorption of amino acids by montmorillonite and gibbsite: Adsorption isotherms and spectroscopic analysis. Applied Clay Science, 2022, 219, 106437.	5.2	10
3	Importance of soil amendments with biochar and/or Arbuscular Mycorrhizal fungi to mitigate aluminum toxicity in tamarind (Tamarindus indica L.) on an acidic soil: A greenhouse study. Heliyon, 2022, 8, e09009.	3.2	5
4	Enriching organic carbon bioavailability can mitigate soil acidification induced by nitrogen fertilization in croplands through microbial nitrogen immobilization. Soil Science Society of America Journal, 2022, 86, 579-592.	2.2	14
5	Effects of pH variations caused by redox reactions and pH buffering capacity on Cd(II) speciation in paddy soils during submerging/draining alternation. Ecotoxicology and Environmental Safety, 2022, 234, 113409.	6.0	24
6	Aluminum mobilization as influenced by soil organic matter during soil and mineral acidification: A constant pH study. Geoderma, 2022, 418, 115853.	5.1	30
7	Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils. Chemosphere, 2022, 301, 134674.	8.2	38
8	Chitosan and D-fructose 1,6-bisphosphate differ in their effects on soil acidity and aluminum activation. Journal of Soils and Sediments, 2022, 22, 2129-2145.	3.0	3
9	Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: A critical synthesis. Journal of Hazardous Materials Advances, 2022, 6, 100086.	3.0	17
10	Effects of straw decayed products of four crops on the amelioration of soil acidity and maize growth in two acidic Ultisols. Environmental Science and Pollution Research, 2021, 28, 5092-5100.	5.3	5
11	Effects of surface charge and chemical forms of manganese(II) on rice roots on manganese absorption by different rice varieties. Ecotoxicology and Environmental Safety, 2021, 207, 111224.	6.0	9
12	Comparing ameliorative effects of biomass ash and alkaline slag on an acidic Ultisol under artificial Masson pine: A field experiment. Journal of Environmental Management, 2021, 297, 113306.	7.8	4
13	Co-Application of Biochar and Arbuscular mycorrhizal Fungi Improves Salinity Tolerance, Growth and Lipid Metabolism of Maize (Zea mays L.) in an Alkaline Soil. Plants, 2021, 10, 2490.	3.5	22
14	A Critical-Systematic Review of the Interactions of Biochar with Soils and the Observable Outcomes. Sustainability, 2021, 13, 13726.	3.2	18
15	The role of extracellular polymeric substances in bacterial adhesion onto variable charge soils. Archives of Agronomy and Soil Science, 2020, 66, 1780-1793.	2.6	12
16	Effects of citrate, oxalate, and phosphate on the sorption of Cr(VI) by extracellular polymeric substances. Journal of Water Process Engineering, 2020, 37, 101510.	5.6	12
17	Plants alter surface charge and functional groups of their roots to adapt to acidic soil conditions. Environmental Pollution, 2020, 267, 115590.	7.5	18
18	Enhancing phosphorus availability in two variable charge soils by the amendments of crop straw biochars. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	4

JACKSON NKOH NKOH

#	Article	IF	CITATIONS
19	Biochar retards Al toxicity to maize (Zea mays L.) during soil acidification: The effects and mechanisms. Science of the Total Environment, 2020, 719, 137448.	8.0	43
20	The mechanism for inhibiting acidification of variable charge soils by adhered Pseudomonas fluorescens. Environmental Pollution, 2020, 260, 114049.	7.5	20
21	Phytotoxicity of Cu2+ and Cd2+ to the roots of four different wheat cultivars as related to charge properties and chemical forms of the metals on whole plant roots. Ecotoxicology and Environmental Safety, 2020, 196, 110545.	6.0	21
22	Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils. Environmental Pollution, 2019, 247, 136-145.	7.5	39
23	An electrokinetic perspective into the mechanism of divalent and trivalent cation sorption by extracellular polymeric substances of Pseudomonas fluorescens. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110450.	5.0	11
24	Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere, 2019, 234, 43-51.	8.2	63
25	Effects of extracellular polymeric substances of Pseudomonas fluorescens, citrate, and oxalate on Pb sorption by an acidic Ultisol. Ecotoxicology and Environmental Safety, 2019, 171, 790-797.	6.0	22
26	Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol. Ecotoxicology and Environmental Safety, 2018, 165, 11-18.	6.0	19