Chihiro Urata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8172715/publications.pdf Version: 2024-02-01

<u> <u>Chihido</u> Πρατά</u>

#	Article	IF	CITATIONS
1	Transparent Organogel Films Showing Extremely Efficient and Durable Anti-Icing Performance. ACS Applied Materials & Interfaces, 2021, 13, 28925-28937.	8.0	47
2	Antiadhesive Properties of Oil-Infused Gels against the Universal Adhesiveness of Polydopamine. Langmuir, 2020, 36, 4496-4502.	3.5	7
3	Spatially-Regulated Deposition of Quantum Dots on the Patterned Polymer Brush. Journal of Nanoscience and Nanotechnology, 2020, 20, 5201-5210.	0.9	0
4	Smooth and Transparent Films Showing Paradoxical Surface Properties: The Lower the Static Contact Angle, the Better the Water Sliding Performance. Langmuir, 2019, 35, 6822-6829.	3.5	18
5	Textured Organogel Films Showing Unusual Thermoresponsive Dewetting, Icephobic, and Optical Properties. Advanced Materials Interfaces, 2019, 6, 1801358.	3.7	28
6	Sol–Gel Preparation of Initiator Layers for Surface-Initiated ATRP: Large-Scale Formation of Polymer Brushes Is Not a Dream. Macromolecules, 2018, 51, 10065-10073.	4.8	38
7	Omniphobic Metal Surfaces with Low Contact Angle Hysteresis and Tilt Angles. Langmuir, 2018, 34, 11405-11413.	3.5	34
8	Polyurethane-Based Ionogels Exhibiting Durable Thermoresponsive Optical Behavior Under High-Temperature Conditions. Journal of Nanoscience and Nanotechnology, 2018, 18, 195-201.	0.9	3
9	Pore Clogging of Colloidal Mesoporous Silica Nanoparticles for Encapsulating Guest Species. Bulletin of the Chemical Society of Japan, 2017, 90, 706-708.	3.2	5
10	Transparent gel composite films with multiple functionalities: Long-lasting anti-fogging, underwater superoleophobicity and anti-bacterial activity. Journal of Colloid and Interface Science, 2017, 505, 566-576.	9.4	35
11	Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability. Langmuir, 2017, 33, 9972-9978.	3.5	53
12	Biomimetic Liquid Repellent Materials Learned from Biological Self-reparing Functionalities. Seikei-Kakou, 2017, 29, 72-75.	0.0	0
13	Programmable Oil/Water Separation Meshes: Water or Oil Selectivity Using Contact Angle Hysteresis. Macromolecular Materials and Engineering, 2016, 301, 1032-1036.	3.6	33
14	Bio-Inspired Layered Hybrid Films Showing Long-Lasting Corrosion Resistance and Repeatable Regeneration of Surface Hydrophobicity. Journal of Nanoscience and Nanotechnology, 2016, 16, 9166-9172.	0.9	3
15	Anti-Fogging/Self-Healing Properties of Clay-Containing Transparent Nanocomposite Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 4318-4322.	8.0	98
16	Effective Use of Alkoxysilanes with Different Hydrolysis Rates for Particle Size Control of Aqueous Colloidal Mesostructured and Mesoporous Silica Nanoparticles by the Seedâ€Growth Method. ChemNanoMat, 2015, 1, 194-202.	2.8	9
17	Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. Journal of Materials Chemistry A, 2015, 3, 12626-12630.	10.3	236
18	Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids. ACS Applied Materials & Interfaces, 2015, 7, 12220-12229.	8.0	21

CHIHIRO URATA

#	Article	IF	CITATIONS
19	Continuous, High-Speed, and Efficient Oil/Water Separation using Meshes with Antagonistic Wetting Properties. ACS Applied Materials & Interfaces, 2015, 7, 18915-18919.	8.0	98
20	A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology. Nanoscale, 2015, 7, 19557-19567.	5.6	34
21	Critical Roles of Cationic Surfactants in the Preparation of Colloidal Mesostructured Silica Nanoparticles: Control of Mesostructure, Particle Size, and Dispersion. ACS Applied Materials & Interfaces, 2014, 6, 3491-3500.	8.0	69
22	An Underwater Superoleophobic Surface That Can Be Activated/Deactivated via External Triggers. Langmuir, 2014, 30, 13438-13446.	3.5	28
23	Large-Scale and Environmentally Friendly Synthesis of pH-Responsive Oil-Repellent Polymer Brush Surfaces under Ambient Conditions. ACS Applied Materials & Interfaces, 2014, 6, 11864-11868.	8.0	92
24	Why Can Organic Liquids Move Easily on Smooth Alkyl-Terminated Surfaces?. Langmuir, 2014, 30, 4049-4055.	3.5	56
25	Hard Coating for Polymer Substrates Through Lamination and Peeling of Porous Anodized Zirconia. Journal of Nanoscience and Nanotechnology, 2014, 14, 3006-3010.	0.9	1
26	Development of environmentally-friendly surface modification technology. Synthesiology, 2014, 7, 185-193.	0.2	1
27	Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm. Nanoscale, 2013, 5, 6145.	5.6	66
28	Transparent and Hard Zirconia-Based Hybrid Coatings with Excellent Dynamic/Thermoresponsive Oleophobicity, Thermal Durability, and Hydrolytic Stability. ACS Applied Materials & Interfaces, 2013, 5, 7899-7905.	8.0	29
29	Unusual Dynamic Dewetting Behavior of Smooth Perfluorinated Hybrid Films: Potential Advantages over Conventional Textured and Liquid-Infused Perfluorinated Surfaces. Langmuir, 2013, 29, 12472-12482.	3.5	50
30	Smooth Perfluorinated Surfaces with Different Chemical and Physical Natures: Their Unusual Dynamic Dewetting Behavior toward Polar and Nonpolar Liquids. Langmuir, 2013, 29, 11322-11329.	3.5	82
31	Long perfluoroalkyl chains are not required for dynamically oleophobic surfaces. Green Chemistry, 2013, 15, 100-104.	9.0	42
32	Novel Transparent Zirconium-Based Hybrid Material With Multilayered Nanostructures: Studies of Surface Dewettability Toward Alkane Liquids. ACS Applied Materials & Interfaces, 2013, 5, 154-163.	8.0	14
33	Bio-Inspired Hard Coating for Polymeric Materials Based on Lamination of Ordered Porous Anodized Zirconia Membranes. Kobunshi Ronbunshu, 2013, 70, 232-234.	0.2	Ο
34	Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids. RSC Advances, 2012, 2, 9805.	3.6	50
35	A Physical Approach To Specifically Improve the Mobility of Alkane Liquid Drops. Journal of the American Chemical Society, 2012, 134, 10191-10199.	13.7	151
36	How To Reduce Resistance to Movement of Alkane Liquid Drops Across Tilted Surfaces Without Relying on Surface Roughening and Perfluorination. Langmuir, 2012, 28, 17681-17689.	3.5	50

CHIHIRO URATA

#	Article	IF	CITATIONS
37	Preparation of Colloidal Mesoporous Silica Nanoparticles with Different Diameters and Their Unique Degradation Behavior in Static Aqueous Systems. Chemistry of Materials, 2012, 24, 1462-1471.	6.7	250
38	Preparation of mesostructured silica–micelle hybrids and their conversion to mesoporous silica modified controllably with immobilized hydrophobic blocks by using triethoxysilyl-terminated PEO–PPO–PEO triblock copolymer. Journal of Materials Chemistry, 2011, 21, 3711.	6.7	8
39	Aqueous Colloidal Mesoporous Nanoparticles with Ethenylene-Bridged Silsesquioxane Frameworks. Journal of the American Chemical Society, 2011, 133, 8102-8105.	13.7	170
40	Fabrication of Hierarchically Porous Spherical Particles by Assembling Mesoporous Silica Nanoparticles via Spray Drying. Journal of Nanoscience and Nanotechnology, 2008, 8, 3101-3105.	0.9	22
41	One-pot Preparation of Mesoporous Silica Particles Having Mesopore Surface Functionalized with Poly(propylene oxide) Chains. Chemistry Letters, 2007, 36, 850-851.	1.3	7