## Ivan Oseledets

## List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8172641/publications.pdf
Version: 2024-02-01

7 Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD). IEEE Access, 2021, 9, 28684-28706. ..... $4.2 \quad 36$
Neural-Based Hierarchical Approach for Detailed Dominant Forest Species Classification by8 Multispectral Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and4.917Remote Sensing, 2021, 14, 1810-1820.Optimization of Water Quality Monitoring Networks Using Metaheuristic Approaches: Moscow
Region Use Case. Water (Switzerland), 2021, 13, 888.Region Use Case. Water (Switzerland), 2021, 13, 888.
10 Dynamic Modeling of User Preferences for Stable Recommendations. , 2021, , .3
11 MixChannel: Advanced Augmentation for Multispectral Satellite Images. Remote Sensing, 2021, $13,2181$. 4.0 ..... 16
12 Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks.Sensors, 2021, 21, 5646.3.811
Solution of the Fokkerâ $\epsilon^{\text {cPPlanck Equation by Cross Approximation Method in the Tensor Train Format. }}$13 Frontiers in Artificial Intelligence, 2021, 4, 668215.
3.4 ..... 8
Latency Estimation Tool and Investigation of Neural Networks Inference on Mobile GPU. Computers,3.37
2021, 10, 104.5.09Randomized algorithms for fast computation of low rank tensor ring model. Machine Learning:Science and Technology, 2021, 2, 011001.9

| 19 | Regulation-based probabilistic substance quality index and automated geo-spatial modeling for water quality assessment. Scientific Reports, 2021, 11, 23822. | 3.3 |
| :---: | :---: | :---: |
| 20 | Black-box learning of multigrid parameters. Journal of Computational and Applied Mathematics, 2020, 368, 112524. | 2.0 |
| 21 | Adaptive algorithm for quantum circuit simulation. Physical Review A, 2020, 101, | 2.5 |
| 22 | Sensitivity Analysis of Soil Parameters in Crop Model Supported with High-Throughput Computing. Lecture Notes in Computer Science, 2020, , 731-741. | 1.3 |
| 23 | Stable Low-Rank Tensor Decomposition for Compression of Convolutional Neural Network. Lecture Notes in Computer Science, 2020, , 522-539. | 1.3 |
| 24 | Tensor Completion via Gaussian Process--Based Initialization. SIAM Journal of Scientific Computing, 2020, 42, A3812-A3824. | 2.8 |

25 TT-TSDF: Memory-Efficient TSDF with Low-Rank Tensor Train Decomposition. , 2020, , . ..... 1
Tensor Train Spectral Method for Learning of Hidden Markov Models (HMM). Computational Methods in Applied Mathematics, 2019, 19, 93-99.
27 Approximate Solution of Linear Systems with Laplace-like Operators via Cross Approximation in the ..... 0.82
IceVisionSet: lossless video dataset collected on Russian winter roads with traffic sign annotations. , 2019, , . ..... 10
29 Low-rank Riemannian eigensolver for high-dimensional Hamiltonians. Journal of Computational Physics, 2019, 396, 718-737.
3.8 ..... 6
Predicting dynamical system evolution with residual neural networks. Keldysh Institute Preprints, $30 \quad$ 2019, , 1-26. ..... 0.203.563.5
Robust topology optimization using a posteriori error estimator for the finite element method.
31 Structural and Multidisciplinary Optimization, 2018, 58, 1619-1632.$2.8 \quad 8$
Jacobi--Davidson Method on Low-Rank Matrix Manifolds. SIAM Journal of Scientific Computing, 2018, 40, Al149-A1170.
Convergence analysis of projected fixedâ€point iteration on a lowâ€rank matrix manifold. Numerical
Linear Algebra With Applications, 2018, 25, e2140. ..... 1.6 ..... 5
33Desingularization of Bounded-Rank Matrix Sets. SIAM Journal on Matrix Analysis and Applications,2018, 39, 451-471.
Rectangular maximum-volume submatrices and their applications. Linear Algebra and Its Applications,
2018, 538, 187-211.

```
37 Evolutionary Structural Optimization Algorithm Based on FFT-JVIE Solver for Inverse Design of Wave
Devices., 2018, ,.
```identification task. Scientific Reports, 2018, 8, 17053.
41 "Compress and Eliminateâ€.Solver for Symmetric Positive Definite Sparse Matrices. SIAM Journal of

How to optimize preconditioners for the conjugate gradient method: a stochastic approach. Keldysh

> Chapter 5: Model Reduction for High-Dimensional Parametric Problems by Tensor Techniques. , 2017, ,

QTT-finite-element approximation for multiscale problems I: model problems in one dimension. Advances in Computational Mathematics, 2017, 43, 411-442.

Towards solving lippmann-schwinger integral equation in 2D with polylogarithmic complexity with
0
quantized tensor train decomposition. , 2017, , .

52 Vico-Greengard-Ferrando quadratures in the tensor solver for integral equations. , 2017, , .
```

55 Efficient Rectangular Maximal-Volume Algorithm for Rating Elicitation in Collaborative Filtering.,
2016, .

```

Calculating vibrational spectra of molecules using tensor train decomposition. Journal of Chemical Physics, 2016, 145, 124101.
\(0.6 \quad 6\)

Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. Foundations and Trends in Machine Learning, 2016, 9, 249-429.
69.0

255

59 Unifying time evolution and optimization with matrix product states. Physical Review B, 2016, 94, .
3.2

387

60 A new approach for sparse Bayesian channel estimation in SCMA uplink systems. , 2016, , .
8

61 Fifty Shades of Ratings. , 2016, , . 13

Machine learning for LCâ€"MS medicinal plants identification. Chemometrics and Intelligent Laboratory
Systems, 2016, 156, 174-180.
3.5

18
63 Iterative representing set selection for nested cross approximation. Numerical Linear Algebra With
Applications, 2016, 23, 230-248.
64 Grid-based electronic structure calculations: The tensor decomposition approach. Journal of
Computational Physics, 2016, 312, 19-30.
65 A low-rank approach to the computation of path integrals. Journal of Computational Physics, 2016,
305, 557-574.

Grid-based electronic structure calculations: The tensor decomposition approach. Journal of Computational Physics, 2016, 312, 19-30.
```

65 A low-rank approach to the computation of path integrals. Journal of Computational Physics, 2016,
305, 557-574.

```
\(3.8 \quad 6\)

66 BLACK-BOX SOLVER FOR ONE-DIMENSIONAL MULTISCALE MODELLING USING THE QTT FORMAT. , 2016, , .
\(67 \quad\) Fitting high-dimensional potential energy surface using active subspace and tensor train (AS+TT) \(\quad 3.0\) method. Journal of Chemical Physics, 2015, 143, 174107.

Fast lowâ€łank approximations of multidimensional integrals in ionâ€ 日tomic collisions modelling.
5
Numerical Linear Algebra With Applications, 2015, 22, 1147-1160.

From Low-Rank Approximation to a Rational Krylov Subspace Method for the Lyapunov Equation. SIAM
Journal on Matrix Analysis and Applications, 2015, 36, 1622-1637.
1.4

Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation. SIAM
Journal of Scientific Computing, 2015, 37, A565-A582.
2.8

32

Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train
71 Decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015,
\(2.7 \quad 75\)
34, 63-76.
```

73 Rectangular submatrices of maximum volume and their computation. Doklady Mathematics, 2015, 91,
267-268.

```
\(0.6 \quad 2\)

Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem. Journal of Inverse and Ill-Posed Problems, 2015, 23, 687-700.
1.0

28

Low-rank retractions: a survey and new results. Computational Optimization and Applications, 2015,
1.6 62, 5-29.

Engineering optimization with the fast boundary element method. WIT Transactions on Modelling and
Simulation, 2015, , .
0.0

2
\begin{tabular}{l} 
A projector-splitting integrator for dynamical low-rank approximation. BIT Numerical Mathematics, \\
\(2014,54,171-188\). \\
\(78 \quad\)\begin{tabular}{l} 
A computationally efficient technique for the solution of multi-dimensional PBMs of granulation via \\
tensor decomposition. Computers and Chemical Engineering, 2014, 61, 234-244.
\end{tabular} \\
\(79 \quad\)\begin{tabular}{l} 
Computation of extreme eigenvalues in higher dimensions using block tensor train format. Computer \\
Physics Communications, 2014, 185, 1207-1216.
\end{tabular} \\
\hline 2.5
\end{tabular}

80 The DEPOSIT computer code based on the low rank approximations. Computer Physics Communications, 2014, 185, 2801-2802.
7.5

4
81 Iterative across-time solution of linear differential equations: Krylov subspace versus waveform
relaxation. Computers and Mathematics With Applications, 2014, 67, 2088-2098.
2.7

94

Physics Communications, 2014, 185, 1207-1216.
66
80

82 Tensor-based multiuser detection and intra-cell interference mitigation in LTE PUCCH. , 2013, , .
5
\begin{tabular}{|c|c|c|c|}
\hline 83 & Constructive Representation of Functions in Low-Rank Tensor Formats. Constructive Approximation, 2013, 37, 1-18. & 3.0 & 72 \\
\hline 84 & Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker--Planck Equation. SIAM Journal of Scientific Computing, 2012, 34, A3016-A3038. & 2.8 & 75 \\
\hline 85 & Solution of Linear Systems and Matrix Inversion in the TT-Format. SIAM Journal of Scientific Computing, 2012, 34, A2718-A2739. & 2.8 & 111 \\
\hline
\end{tabular}

\section*{86 \\ Low-Rank Tensor Structure of Solutions to Elliptic Problems with Jumping Coefficients. Journal of Computational Mathematics, 2012, 30, 14-23.}
\(0.4 \quad 2\)

Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker
Case. SIAM Journal of Scientific Computing, 2012, 34, A1-A27.
\(2.8 \quad 14\)

Representation of quasiseparable matrices using excluded sums and equivalent charges. Linear
Algebra and Its Applications, 2012, 436, 699-708.
2

A reciprocal preconditioner for structured matrices arising from elliptic problems with jumping
coefficients. Linear Algebra and Its Applications, 2012, 436, 2980-3007.
0.9

Tensor train decomposition for low-parametric representation of high-dimensional arrays and
functions: Review of recent results., 2011, , .
91 Tensor-Train Decomposition. SIAM Journal of Scientific Computing, 2011, 33, 2295-2317. 2.8

92 QTT approximation of elliptic solution operators in higher dimensions. Russian Journal of Numerical
93 Tensor-Train Ranks for Matrices and Their Inverses. Computational Methods in Applied Mathematics,
\(2011,11,394-403\).

94 DMRG Approach to Fast Linear Algebra in the TT-Format. Computational Methods in Applied
Algebraic Wavelet Transform via Quantics Tensor Train Decomposition. SIAM Journal of Scientific
Computing, 2011, 33, 1315-1328.
Computing, 2011, 33, 1315-1328.
\(2.8 \quad 13\)

98 Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs.
Computational Methods in Applied Mathematics, 2010, 10, 376-394.
\(0.8 \quad 46\)

99 Approximation of \(\$ 2^{\wedge}\) dimes \(2^{\wedge}\) d \$ Matrices Using Tensor Decomposition. SIAM Journal on Matrix
Analysis and Applications, 2010, 31, 2130-2145.
1.4

100 Cross approximation in tensor electron density computations. Numerical Linear Algebra With Applications, 2010, 17, 935-952.
\(101 \begin{aligned} & \text { TT-cross approximation for multidimensional arrays. Linear Algebra and Its Applications, 2010, 432, } \\ & 70-88 \text {. }\end{aligned}\)
70-88.
0.9324

102 Fast orthogonalization to the kernel of the discrete gradient operator with application to Stokes problem. Linear Algebra and Its Applications, 2010, 432, 1492-1500.
0.9

3
103 Linear algebra for tensor problems. Computing (Vienna/New York), 2009, 85, 169-188.

4.8

38

Matrix inversion cases with size-independent tensor rank estimates. Linear Algebra and Its
0.9

2 Applications, 2009, 431, 558-570.

Fast Simultaneous Orthogonal Reduction to Triangular Matrices. SIAM Journal on Matrix Analysis and Applications, 2009, 31, 316-330.
1.4

9

106 Recursive decomposition of multidimensional tensors. Doklady Mathematics, 2009, 80, 460-462.
0.6

14
107 A new tensor decomposition. Doklady Mathematics, 2009, 80, 495-496.

0.6
109

The tensor structure of the inverse of a banded Toeplitz matrix. Doklady Mathematics, 2009, 80, 669-670.

\section*{Integration of oscillating functions in a quasi-three-dimensional electrodynamic problem. \\ 110 Computational Mathematics and Mathematical Physics, 2009, 49, 292-303.}

Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions. SIAM Journal of
2.8

312
\(111 \begin{aligned} & \text { Breaking the Curse of Dimensionality, Or How } \\ & \text { Scientific Computing, 2009, 31, 3744-3759. }\end{aligned}\)

The integral operator with logarithmic kernel has only one positive eigenvalue. Linear Algebra and Its
Optimal Karatsuba-like formulae for certain bilinear forms in GF(2). Linear Algebra and Its
Applications, 2008, 429, 2052-2066.

Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time. SIAM Journal on Matrix
Analysis and Applications, 2008, 30, 939-956.
1.4

146
Lower bounds for separable approximations of the Hilbert kernel. Sbornik Mathematics, 2007, 198,
425-432.
116 Superfast Inversion of Two-Level Toeplitz Matrices Using Newton Iteration and Tensor-Displacement Structure., 2007, , 229-240.
0.6

11

11

A unifying approach to the construction of circulant preconditioners. Linear Algebra and lts
Applications, 2006, 418, 435-449.
0.9

17

Approximation of Toeplitz matrices by sums of circulants and small-rank matrices. Doklady
118 Mathematics, 2006, 73, 100-101.
0.6

6
0.8

15
119 Minimization methods for approximating tensors and their comparison. Computational Mathematics
and Mathematical Physics, 2006, 46, 1641-1650.

Tensor properties of multilevel Toeplitz and related matrices. Linear Algebra and Its Applications,```

