Ivan Oseledets

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8172641/publications.pdf
Version: 2024-02-01

1 Tensor-Train Decomposition. SIAM Journal of Scientific Computing, 2011, 33, 2295-2317. 2.8 1,4012 Unifying time evolution and optimization with matrix product states. Physical Review B, 2016, 94, .3.2387Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank TensorDecompositions. Foundations and Trends in Machine Learning, 2016, 9, 249-429.11 A projector-splitting integrator for dynamical low-rank approximation. BIT Numerical Mathematics,2014, 54, 171-188.
94Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial12 Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial \quad Application to the Fokker--Planck Equation. SIAM Journal of Scientific Computing, 2012, 34, A3016-A3038.2.875
Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train
13 Decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 2.7 75
34, 63-76.
Constructive Representation of Functions in Low-Rank Tensor Formats. Constructive Approximation,3.0722013, 37, 1-18.
7.5 66Computation of extreme eigenvalues in higher dimensions using block tensor train format. Computer
Physics Communications, 2014, 185, 1207-1216.

24 Fast adaptive interpolation of multi-dimensional arrays in tensor train format. , 2011, , .
Tensor properties of multilevel Toeplitz and related matrices. Linear Algebra and Its Applications, 2006, 412, 1-21.
QTT approximation of elliptic solution operators in higher dimensions. Russian Journal of NumericalAnalysis and Mathematical Modelling, 2011, 26, .$0.6 \quad 32$
27 Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation. SIAM
Journal of Scientific Computing, 2015, 37, A565-A582. 2.8 32
Low-rank retractions: a survey and new results. Computational Optimization and Applications, 2015, 62, 5-29.
29 Approximation of matrices with logarithmic number of parameters. Doklady Mathematics, 2009, 80, 653-654.
0.6 30
30 Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem. Journalof Inverse and III-Posed Problems, 2015, 23, 687-700.
1.0 28
31 A new tensor decomposition. Doklady Mathematics, 2009, 80, 495-496. 0.6 27Rectangular maximum-volume submatrices and their applications. Linear Algebra and Its Applications,

\#	Article	IF	Citations
37	Machine learning for LCâ€"MS medicinal plants identification. Chemometrics and Intelligent Laboratory Systems, 2016, 156, 174-180.	3.5	18
38	A unifying approach to the construction of circulant preconditioners. Linear Algebra and Its Applications, 2006, 418, 435-449.	0.9	17
39	Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task. Scientific Reports, 2018, 8, 17053.	3.3	17
40	Neural-Based Hierarchical Approach for Detailed Dominant Forest Species Classification by Multispectral Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1810-1820.	4.9	17
41	Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised Classification and Object-Wise Sampling. Forests, 2021, 12, 1413.	2.1	17
42	Grid-based electronic structure calculations: The tensor decomposition approach. Journal of Computational Physics, 2016, 312, 19-30.	3.8	16
43	QTT-finite-element approximation for multiscale problems I: model problems in one dimension. Advances in Computational Mathematics, 2017, 43, 411-442.	1.6	16
44	MixChannel: Advanced Augmentation for Multispectral Satellite Images. Remote Sensing, 2021, 13, 2181.	4.0	16
45	Estimation of the Canopy Height Model From Multispectral Satellite Imagery With Convolutional Neural Networks. IEEE Access, 2022, 10, 34116-34132.	4.2	16
46	Minimization methods for approximating tensors and their comparison. Computational Mathematics and Mathematical Physics, 2006, 46, 1641-1650.	0.8	15
47	Black-box learning of multigrid parameters. Journal of Computational and Applied Mathematics, 2020, 368, 112524.	2.0	15
48	Recursive decomposition of multidimensional tensors. Doklady Mathematics, 2009, 80, 460-462.	0.6	14
49	Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case. SIAM Journal of Scientific Computing, 2012, 34, A1-A27.	2.8	14
50	Application of machine learning to viscoplastic flow modeling. Physics of Fluids, 2018, 30, .	4.0	14
51	Algebraic Wavelet Transform via Quantics Tensor Train Decomposition. SIAM Journal of Scientific Computing, 2011, 33, 1315-1328.	2.8	13

55	Object-Based Augmentation for Building Semantic Segmentation: Ventura and Santa Rosa Case Stu 2021, , .		12
56	Augmentation-Based Methodology for Enhancement of Trees Map Detalization on a Large Scale. Remote Sensing, 2022, 14, 2281.	4.0	12
57	Lower bounds for separable approximations of the Hilbert kernel. Sbornik Mathematics, 2007, 198, 425-432.	0.6	11
58	Optimal Karatsuba-like formulae for certain bilinear forms in GF(2). Linear Algebra and Its Applications, 2008, 429, 2052-2066.	0.9	11
59	Superfast Inversion of Two-Level Toeplitz Matrices Using Newton Iteration and Tensor-Displacement Structure. , 2007, , 229-240.		11
60	Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks. Sensors, 2021, 21, 5646.	3.8	11
61	Iterative representing set selection for nested cross approximation. Numerical Linear Algebra With Applications, 2016, 23, 230-248.	1.6	10
62	IceVisionSet: lossless video dataset collected on Russian winter roads with traffic sign annotations. , 2019, , .		10

63 Fast Simultaneous Orthogonal Reduction to Triangular Matrices. SIAM Journal on Matrix Analysis and Applications, 2009, 31, 316-330.
64 Improved n-Term Karatsuba-Like Formulas in GF(2). IEEE Transactions on Computers, 2011, 60, 1212-1216. 3.49

65	Randomized algorithms for fast computation of low rank tensor ring model. Machine Learning: Science and Technology, 2021, 2, 011001.	5.0	9
66	Cross Tensor Approximation Methods for Compression and Dimensionality Reduction. IEEE Access, 2021, 9, 150809-150838.	4.2	9
67	Fitting high-dimensional potential energy surface using active subspace and tensor train (AS+TT) method. Journal of Chemical Physics, 2015, 143, 174107.	3.0	8

68 A new approach for sparse Bayesian channel estimation in SCMA uplink systems. , 2016, , . 8
Jacobi--Davidson Method on Low-Rank Matrix Manifolds. SIAM Journal of Scientific Computing, 2018,
40, Al149-A1170.

70 Solution of the Fokkerâ€"Planck Equation by Cross Approximation Method in the Tensor Train Format. Frontiers in Artificial Intelligence, 2021, 4, 668215.
$3.4 \quad 8$
71 A reciprocal preconditioner for structured matrices arising from elliptic problems with jumping
coefficients. Linear Algebra and Its Applications, 2012, 436, 2980-3007.
$0.9 \quad 7$

75	Iterative across-time solution of linear differential equations: Krylov subspace versus waveform relaxation. Computers and Mathematics With Applications, 2014, 67, 2088-2098.	2.7	6
76	Preconditioners for hierarchical matrices based on their extended sparse form. Russian Journal of Numerical Analysis and Mathematical Modelling, 2016, 31, .	0.6	6
77	A low-rank approach to the computation of path integrals. Journal of Computational Physics, 2016, 305, 557-574.	3.8	6
78	Robust topology optimization using a posteriori error estimator for the finite element method. Structural and Multidisciplinary Optimization, 2018, 58, 1619-1632.	3.5	6
79	Desingularization of Bounded-Rank Matrix Sets. SIAM Journal on Matrix Analysis and Applications, 2018, 39, 451-471.	1.4	6
80	Thermal dissociation and H/D exchange of streptavidin tetramers at atmospheric pressure. International Journal of Mass Spectrometry, 2018, 427, 100-106.	1.5	6
81	"Compress and Eliminateâ€:Solver for Symmetric Positive Definite Sparse Matrices. SIAM Journal of Scientific Computing, 2018, 40, A1742-A1762.	2.8	6

Low-rank Riemannian eigensolver for high-dimensional Hamiltonians. Journal of Computational

Physics, 2019, 396, 718-737.
83 Optimization of Water Quality Monitoring Networks Using Metaheuristic Approaches: MoscowRegion Use Case. Water (Switzerland), 2021, 13, 888.
2.7 6
84 Tensor-based multiuser detection and intra-cell interference mitigation in LTE PUCCH. , 2013, , 5
85 Fast lowâ€rank approximations of multidimensional integrals in ionâ€atomic collisions modelling. 1.6 5
Numerical Linear Algebra With Applications, 2015, 22, 1147-1160.Convergence analysis of projected fixedâ€point iteration on a lowâ€ \neq mank matrix manifold. Numerical1.65Linear Algebra With Applications, 2018, 25, e2140.

The DEPOSIT computer code based on the low rank approximations. Computer Physics Communications, 2014, 185, 2801-2802.
Efficient Rectangular Maximal-Volume Algorithm for Rating Elicitation in Collaborative Filtering. ,
2016, , .7.54
Sensitivity Analysis of Soil Parameters in Crop Model
Lecture Notes in Computer Science, 2020, , 731-741.1.3
Fast orthogonalization to the kernel of the discrete gradient operator with application to Stokes
problem. Linear Algebra and Its Applications, 2010, 432, 1492-1500.
92 Scalable topology optimization with the kernel-independent fast multipole method. Engineering
Analysis With Boundary Elements, 2017, 83, 123-132.
93

Evolutionary Structural Optimization Algorithm Based on FFT-JVIE Solver for Inverse Design of Wave
Devices. , 2018, , .

94 Dynamic Modeling of User Preferences for Stable Recommendations., 2021, , . 3

95	Use of Divided Differences and B Splines for Constructing Fast Discrete Transforms of Wavelet Type on Nonuniform Grids. Mathematical Notes, 2005, 77, 686-694.	0.4	2
96	The integral operator with logarithmic kernel has only one positive eigenvalue. Linear Algebra and Its Applications, 2008, 428, 1560-1564.	0.9	2
97	Matrix inversion cases with size-independent tensor rank estimates. Linear Algebra and Its Applications, 2009, 431, 558-570.	0.9	2

98 Tensor train decomposition for low-parametric representation of high-dimensional arrays and functions: Review of recent results. , 2011, , .

2
99 Low-Rank Tensor Structure of Solutions to Elliptic Problems with Jumping Coefficients. Journal of
Computational Mathematics, 2012, 30, 14-23. 0.4 2
Representation of quasiseparable matrices using excluded sums and equivalent charges. Linear
100 Algebra and Its Applications, 2012, 436, 699-708. 0.9 2
1.4 2
From Low-Rank Approximation to a Rational Krylov Subspace Meth
Journal on Matrix Analysis and Applications, 2015, 36, 1622-1637.
.
$0.6 \quad 2$
Rectangular submatrices of maximum volume and their computation. Doklady Mathematics, 2015, 91, 267-268. 102Tensor Train Spectral Method for Learning of Hidden Markov Models (HMM). Computational Methodsin Applied Mathematics, 2019, 19, 93-99.Approximate Solution of Linear Systems with Laplace-like Operators via Cross Approximation in theFrequency Domain. Computational Methods in Applied Mathematics, 2019, 19, 137-145.0.8
A New Multi-objective Approach to Optimize Irrigation Using a Crop Simulation Model and Weather
History. Lecture Notes in Computer Science, 2021, , 75-88.1.3Time- and memory-efficient representation of complex mesoscale potentials. Journal of Computational
109 Tensor Completion via Gaussian Process--Based Initialization. SIAM Journal of Scientific Computing,
109 2020, 42, A3812-A3824.
$2.8 \quad 2$

110 Integration of oscillating functions in a quasi-three-dimensional electrodynamic problem. Computational Mathematics and Mathematical Physics, 2009, 49, 292-303.
113 Regulation-based probabilistic substance quality index and automated geo-spatial modeling for water
quality assessment. Scientific Reports, 2021, $11,23822$.

Towards solving lippmann-schwinger integral equation in 2D with polylogarithmic complexity with quantized tensor train decomposition. , 2017, , .
o

117 Vico-Greengard-Ferrando quadratures in the tensor solver for integral equations., 2017, , .

118 QTT-isogeometric solver in two dimensions. Journal of Computational Physics, 2021, 424, 109835.
3.8

0

$$
\begin{aligned}
& 119 \text { How to optimize preconditioners for the conjugate gradient method: a stochastic approach. Keldysh } \\
& \text { Institute Preprints, 2018, , 1-26. }
\end{aligned}
$$

