
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817263/publications.pdf Version: 2024-02-01

ANATOL C FELDMAN

#	Article	IF	CITATIONS
1	Effect of Object Texture and Weight on Ipsilateral Corticospinal Influences During Bimanual Holding in Humans. Motor Control, 2022, 26, 76-91.	0.6	0
2	Central pattern generator and human locomotion in the context of referent control of motor actions. Clinical Neurophysiology, 2021, 132, 2870-2889.	1.5	23
3	Mild Stroke Affects Pointing Movements Made in Different Frames of Reference. Neurorehabilitation and Neural Repair, 2021, 35, 207-219.	2.9	3
4	Eye and head movements and vestibulo-ocular reflex in the context of indirect, referent control of motor actions. Journal of Neurophysiology, 2020, 124, 115-133.	1.8	16
5	Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clinical Neurophysiology, 2020, 131, 2067-2078.	1.5	15
6	Development of vertical and forward jumping skills in typically developing children in the context of referent control of motor actions. Developmental Psychobiology, 2020, 62, 711-722.	1.6	7
7	Visual deprivation is met with active changes in ground reaction forces to minimize worsening balance and stability during walking. Experimental Brain Research, 2020, 238, 369-379.	1.5	6
8	Stability of reaching during standing in stroke. Journal of Neurophysiology, 2020, 123, 1756-1765.	1.8	18
9	Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study. Experimental Brain Research, 2019, 237, 1655-1672.	1.5	12
10	Indirect, referent control of motor actions underlies directional tuning of neurons. Journal of Neurophysiology, 2019, 121, 823-841.	1.8	32
11	Spasticity may obscure motor learning ability after stroke. Journal of Neurophysiology, 2018, 119, 5-20.	1.8	31
12	Referent control of the orientation of posture and movement in the gravitational field. Experimental Brain Research, 2018, 236, 381-398.	1.5	20
13	Vestibular and corticospinal control of human body orientation in the gravitational field. Journal of Neurophysiology, 2018, 120, 3026-3041.	1.8	28
14	Activation of elbow extensors during passive stretch of flexors in patients with post-stroke spasticity. Clinical Neurophysiology, 2018, 129, 2065-2074.	1.5	19
15	Referent control and motor equivalence of reaching from standing. Journal of Neurophysiology, 2017, 117, 303-315.	1.8	13
16	Threshold position control of anticipation in humans: a possible role of corticospinal influences. Journal of Physiology, 2017, 595, 5359-5374.	2.9	8
17	Stretch-reflex threshold modulation during active elbow movements in post-stroke survivors with spasticity. Clinical Neurophysiology, 2017, 128, 1891-1897.	1.5	27
18	Implicit learning and generalization of stretch response modulation in humans. Journal of Neurophysiology, 2016, 115, 3186-3194.	1.8	24

#	Article	IF	CITATIONS
19	The Relationship Between Postural and Movement Stability. Advances in Experimental Medicine and Biology, 2016, 957, 105-120.	1.6	28
20	Active sensing without efference copy: referent control of perception. Journal of Neurophysiology, 2016, 116, 960-976.	1.8	39
21	Spatial control of reflexes, posture and movement in normal conditions and after neurological lesions. Journal of Human Kinetics, 2016, 52, 21-34.	1.5	9
22	Referent control of action and perception. , 2015, , .		114
23	Action and Perception in the Context of Physical Laws. , 2015, , 13-32.		Ο
24	Physiological Origin and Feed-Forward Nature of Referent Control. , 2015, , 83-95.		0
25	Different Forms of Referent Control. , 2015, , 97-128.		Ο
26	Solutions to Classical Problems in the Control of Motor Actions. , 2015, , 129-172.		0
27	Referent Control as a Specific Form of Parametric Control of Actions: Empirical Demonstrations. , 2015, , 33-82.		0
28	Arm–Trunk Coordination for Beyond-the-Reach Movements in Adults With Stroke. Neurorehabilitation and Neural Repair, 2014, 28, 355-366.	2.9	42
29	Effects of walking speed on gait stability and interlimb coordination in younger and older adults. Gait and Posture, 2014, 39, 378-385.	1.4	59
30	Motor Control and Position Sense: Action–Perception Coupling. Advances in Experimental Medicine and Biology, 2014, 826, 17-31.	1.6	8
31	Bilateral coupling facilitates recovery of rhythmical movements from perturbation in healthy and post-stroke subjects. Experimental Brain Research, 2013, 227, 263-274.	1.5	7
32	Action–perception coupling in kinesthesia: A new approach. Neuropsychologia, 2013, 51, 2590-2599.	1.6	11
33	Stretch reflex spatial threshold measure discriminates between spasticity and rigidity. Clinical Neurophysiology, 2013, 124, 740-751.	1.5	59
34	Corticospinal control strategies underlying voluntary and involuntary wrist movements. Behavioural Brain Research, 2013, 236, 350-358.	2.2	33
35	Arm-trunk coordination as a measure of vestibulospinal efficiency. Journal of Vestibular Research: Equilibrium and Orientation, 2013, 23, 237-247.	2.0	8
36	Reduced gait stability in high-functioning poststroke individuals. Journal of Neurophysiology, 2013, 109, 77-88.	1.8	36

#	Article	IF	CITATIONS
37	A New Standard in Objective Measurement of Spasticity. Journal of Medical Devices, Transactions of the ASME, 2013, 7, .	0.7	10
38	Subthreshold corticospinal control of anticipatory actions in humans. Behavioural Brain Research, 2011, 224, 145-154.	2.2	35
39	Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting. Experimental Brain Research, 2011, 210, 91-115.	1.5	41
40	Space and time in the context of equilibriumâ€point theory. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 287-304.	2.8	66
41	How the Brain Solves Redundancy Problems. Motor Control, 2010, 14, e1-e5.	0.6	0
42	Reach-to-grasp movement as a minimization process. Experimental Brain Research, 2010, 201, 75-92.	1.5	22
43	Prehension synergies and control with referent hand configurations. Experimental Brain Research, 2010, 202, 213-229.	1.5	70
44	Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. Journal of Physiology, 2010, 588, 1551-1570.	2.9	70
45	New insights into action–perception coupling. Experimental Brain Research, 2009, 194, 39-58.	1.5	110
46	Joint coordination during bimanual transport of real and imaginary objects. Neuroscience Letters, 2009, 456, 80-84.	2.1	16
47	Origin and Advances of the Equilibrium-Point Hypothesis. Advances in Experimental Medicine and Biology, 2009, 629, 637-643.	1.6	44
48	The Equilibrium-Point Hypothesis – Past, Present and Future. Advances in Experimental Medicine and Biology, 2009, 629, 699-726.	1.6	116
49	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		Ο
50	Threshold position control signifies a common spatial frame of reference for motor action and kinesthesia. Brain Research Bulletin, 2008, 75, 497-499.	3.0	8
51	Threshold position control and the principle of minimal interaction in motor actions. Progress in Brain Research, 2007, 165, 267-281.	1.4	72
52	A stretch reflex in extraocular muscles of species purportedly lacking muscle spindles. Experimental Brain Research, 2007, 180, 15-21.	1.5	21
53	Threshold position control of arm movement with anticipatory increase in grip force. Experimental Brain Research, 2007, 181, 49-67.	1.5	96
54	Central Resetting of Neuromuscular Steady States May Underlie Rhythmical Arm Movements. Journal of Neurophysiology, 2006, 96, 1124-1134.	1.8	16

#	Article	IF	CITATIONS
55	Threshold control of motor actions prevents destabilizing effects of proprioceptive delays. Experimental Brain Research, 2006, 174, 229-239.	1.5	44
56	Threshold control of arm posture and movement adaptation to load. Experimental Brain Research, 2006, 175, 726-744.	1.5	32
57	Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Experimental Brain Research, 2005, 161, 91-103.	1.5	176
58	Basic elements of arm postural control analyzed by unloading. Experimental Brain Research, 2005, 164, 225-241.	1.5	33
59	Referent configuration of the body: a global factor in the control of multiple skeletal muscles. Experimental Brain Research, 2004, 155, 291-300.	1.5	48
60	Guiding Movements without Redundancy Problems. Understanding Complex Systems, 2004, , 155-176.	0.6	14
61	Vestibular contribution to combined arm and trunk motion. Experimental Brain Research, 2003, 150, 515-519.	1.5	44
62	A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research, 2003, 153, 275-288.	1.5	228
63	Pointing movements may be produced in different frames of reference depending on the task demand. Brain Research, 2002, 929, 117-128.	2.2	32
64	Sequential control signals determine arm and trunk contributions to hand transport during reaching in humans. Journal of Physiology, 2002, 538, 659-671.	2.9	41
65	With either separate or integrated arrays of senses, perception may not be direct. Behavioral and Brain Sciences, 2001, 24, 220-221.	0.7	Ο
66	Hand trajectory invariance in reaching movements involving the trunk. Experimental Brain Research, 2001, 138, 288-303.	1.5	86
67	The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson's patients during reaching movements. Experimental Brain Research, 2000, 133, 279-292.	1.5	61
68	Superposition of independent units of coordination during pointing movements involving the trunk with and without visual feedback. Experimental Brain Research, 2000, 131, 336-349.	1.5	46
69	Multi-muscle control of head movements in monkeys: the referent configuration hypothesis. Neuroscience Letters, 2000, 283, 65-68.	2.1	74
70	Compensatory arm–trunk coordination in pointing movements is preserved in the absence of visual feedback. Brain Research, 1998, 802, 274-280.	2.2	23
71	1998 ISEK Congress Keynote Lecture. Journal of Electromyography and Kinesiology, 1998, 8, 383-390.	1.7	68
72	Recent Tests of the Equilibrium-Point Hypothesis (λ Model). Motor Control, 1998, 2, 189-205.	0.6	75

ANATOL G FELDMAN

#	Article	IF	CITATIONS
73	Control variables in movement production: An experimentally derived concept. Behavioral and Brain Sciences, 1997, 20, 773-773.	0.7	1
74	Central Modifications of Reflex Parameters May Underlie the Fastest Arm Movements. Journal of Neurophysiology, 1997, 77, 1460-1469.	1.8	47
75	Phasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener muscles. Experimental Brain Research, 1997, 116, 299-308.	1.5	43
76	The control of multi-muscle systems: human jaw and hyoid movements. Biological Cybernetics, 1996, 74, 373-384.	1.3	78
77	The control of multi-muscle systems: human jaw and hyoid movements. Biological Cybernetics, 1996, 74, 373-384.	1.3	17
78	The origin and use of positional frames of reference in motor control. Behavioral and Brain Sciences, 1995, 18, 723-744.	0.7	639
79	The role of stretch reflex threshold regulation in normal and impaired motor control. Brain Research, 1994, 657, 23-30.	2.2	190
80	Control of Trajectory Modifications in Target-Directed Reaching. Journal of Motor Behavior, 1993, 25, 140-152.	0.9	211
81	Reciprocal and coactivation commands for fast wrist movements. Experimental Brain Research, 1992, 89, 669-77.	1.5	111
82	Once More on the Equilibrium-Point Hypothesis (λ Model) for Motor Control. Journal of Motor Behavior, 1986, 18, 17-54.	0.9	1,177