Xianchun Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8172628/publications.pdf

Version: 2024-02-01

		136740	149479
57	4,467 citations	32	56
papers	citations	h-index	g-index
58	58	58	3044
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135, 1083-1099.	1.8	12
2	High Resolution Genome Wide Association Studies Reveal Rich Genetic Architectures of Grain Zinc and Iron in Common Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 13, 840614.	1.7	15
3	Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array. Theoretical and Applied Genetics, 2021, 134, 1233-1251.	1.8	34
4	Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping. Plant Physiology, 2021, 187, 2623-2636.	2.3	15
5	Genome-wide linkage mapping for canopy activity related traits using three RIL populations in bread wheat. Euphytica, 2021, 217, 1.	0.6	4
6	Genome-Wide Association Study Uncover the Genetic Architecture of Salt Tolerance-Related Traits in Common Wheat (Triticum aestivum L.). Frontiers in Genetics, 2021, 12, 663941.	1.1	15
7	Molecular mapping and characterization of QBp.caas-3BL for black point resistance in wheat (Triticum) Tj ETQq1	1 0.7843 1.8	14 ₄ rgBT /Over
8	Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theoretical and Applied Genetics, 2021, 134, 3731-3741.	1.8	14
9	TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. Plant Journal, 2021, 108, 829-840.	2.8	27
10	Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data. Frontiers in Plant Science, 2021, 12, 730181.	1.7	11
11	Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2020, 216, 1.	0.6	24
12	Assessment of Water and Nitrogen Use Efficiencies Through UAV-Based Multispectral Phenotyping in Winter Wheat. Frontiers in Plant Science, 2020, 11, 927.	1.7	43
13	Identification and Validation of New Stable QTLs for Grain Weight and Size by Multiple Mapping Models in Common Wheat. Frontiers in Genetics, 2020, 11, 584859.	1.1	8
14	Genome-Wide Association Analysis of Fusarium Head Blight Resistance in Chinese Elite Wheat Lines. Frontiers in Plant Science, 2020, 11, 206.	1.7	44
15	Genome-wide association analysis of stem water-soluble carbohydrate content in bread wheat. Theoretical and Applied Genetics, 2020, 133, 2897-2914.	1.8	20
16	Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 2020, 133, 1811-1823.	1.8	113
17	Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. Theoretical and Applied Genetics, 2020, 133, 2431-2450.	1.8	10
18	Molecular Marker Development and Application for Improving Qualities in Bread Wheat. , 2020, , 323-345.		O

#	Article	IF	Citations
19	Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132, 2947-2963.	1.8	48
20	Isolation and characterization of TaQsd1 genes for period of dormancy in common wheat (Triticum) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
21	From markers to genome-based breeding in wheat. Theoretical and Applied Genetics, 2019, 132, 767-784.	1.8	115
22	Genome-wide association mapping of root system architecture traits in common wheat (Triticum) Tj ETQq0 0 0	rgBT/Ovei	lock 10 Tf 50
23	Genome-wide association study of feruloyl arabinoxylan content in common wheat grain. Journal of Cereal Science, 2019, 89, 102787.	1.8	4
24	Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019, 19, 168.	1.6	172
25	Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods, 2019, 15, 37.	1.9	86
26	Preliminary Exploration of the Source, Spread, and Distribution of <i>Rht24</i> Reducing Height in Bread Wheat. Crop Science, 2019, 59, 19-24.	0.8	17
27	A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, 2019, 282, 95-103.	1.7	238
28	Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theoretical and Applied Genetics, 2018, 131, 1063-1071.	1.8	26
29	Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 2018, 131, 1903-1924.	1.8	107
30	Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sensing, 2018, 10, 809.	1.8	98
31	A Genome-Wide Association Study Reveals a Rich Genetic Architecture of Flour Color-Related Traits in Bread Wheat. Frontiers in Plant Science, 2018, 9, 1136.	1.7	34
32	Cloning of TaTPP-6AL1 associated with grain weight in bread wheat and development of functional marker. Molecular Breeding, 2017, 37, 1.	1.0	69
33	Genetic Progress in Grain Yield and Physiological Traits in Chinese Wheat Cultivars of Southern Yellow and Huai Valley since 1950. Crop Science, 2017, 57, 760-773.	0.8	94
34	Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Molecular Plant, 2017, 10, 1047-1064.	3.9	380
35	QTL Mapping of Adult-Plant Resistance to Leaf Rust in the Wheat Cross Zhou 8425B/Chinese Spring Using High-Density SNP Markers. Frontiers in Plant Science, 2017, 8, 793.	1.7	58
36	Molecular Mapping of Reduced Plant Height Gene Rht24 in Bread Wheat. Frontiers in Plant Science, 2017, 8, 1379.	1.7	109

#	Article	IF	CITATIONS
37	Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biology, 2017, 17, 220.	1.6	141
38	Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population. Frontiers in Plant Science, 2016, 7, 1032.	1.7	84
39	Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biology, 2016, 16, 228.	1.6	27
40	Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2016, 129, 2179-2190.	1.8	35
41	Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129, 1843-1860.	1.8	357
42	Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theoretical and Applied Genetics, 2016, 129, 377-394.	1.8	60
43	Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Frontiers in Plant Science, 2015, 6, 743.	1.7	169
44	Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science, 2015, 6, 1099.	1.7	267
45	Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL. Theoretical and Applied Genetics, 2015, 128, 2067-2076.	1.8	26
46	Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014, 127, 855-866.	1.8	80
47	TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 2014, 34, 1097-1107.	1.0	139
48	Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology, 2014, 14, 128.	1.6	102
49	Development of Functional Markers for a Lipoxygenase Gene <i>TaLoxâ€B1</i> on Chromosome 4BS in Common Wheat. Crop Science, 2012, 52, 568-576.	0.8	35
50	Functional markers in wheat: current status and future prospects. Theoretical and Applied Genetics, 2012, 125, 1-10.	1.8	188
51	Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding, 2012, 29, 43-52.	1.0	168
52	Alternative splicing in the coding region of Ppo-A1 directly influences the polyphenol oxidase activity in common wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2011, 11, 85-93.	1.4	27
53	Characterization of CIMMYT bread wheats for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica, 2010, 172, 235-250.	0.6	71
54	Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). Journal of Cereal Science, 2010, 51, 305-312.	1.8	90

XIANCHUN XIA

#	Article	IF	CITATIONS
55	QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theoretical and Applied Genetics, 2009, 119, 1349-1359.	1.8	101
56	Functional markers in wheat. Current Opinion in Plant Biology, 2007, 10, 211-216.	3.5	92
57	Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica, 2006, 152, 109-116.	0.6	105