Steven P Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8171953/publications.pdf

Version: 2024-02-01

31902 51492 8,248 136 53 86 citations h-index g-index papers 150 150 150 6122 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Advanced Solid-State NMR Methods for the Elucidation of Structure and Dynamics of Molecular, Macromolecular, and Supramolecular Systems. Chemical Reviews, 2001, 101, 4125-4156.	23.0	482
2	Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nature Chemistry, 2019, 11, 789-796.	6.6	331
3	Applications of high-resolution 1H solid-state NMR. Solid State Nuclear Magnetic Resonance, 2012, 41, 1-27.	1.5	288
4	Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications, 2016, 7, 13902.	5.8	287
5	An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants, 2017, 3, 859-865.	4.7	204
6	An Investigation of Hydrogen Bonding in Benzoxazine Dimers by Fast Magic-Angle Spinning and Double-Quantum1H NMR Spectroscopy. Journal of the American Chemical Society, 1998, 120, 11784-11795.	6.6	197
7	An Investigation of Ï€â^Ï€ Packing in a Columnar Hexabenzocoronene by Fast Magic-Angle Spinning and Double-Quantum1H Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 1999, 121, 6712-6718.	6.6	195
8	Probing proton–proton proximities in the solid state. Progress in Nuclear Magnetic Resonance Spectroscopy, 2007, 50, 199-251.	3.9	193
9	An Investigation of Weak CH···O Hydrogen Bonds in Maltose Anomers by a Combination of Calculation and Experimental Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2005, 127, 10216-10220.	6.6	185
10	Two-Dimensional Multiple-Quantum MAS NMR of Quadrupolar Nuclei: A Comparison of Methods. Journal of Magnetic Resonance, 1997, 128, 42-61.	1.2	182
11	A G ₄ ·K ⁺ Hydrogel Stabilized by an Anion. Journal of the American Chemical Society, 2014, 136, 12596-12599.	6.6	163
12	Molecular architecture of softwood revealed by solid-state NMR. Nature Communications, 2019, 10, 4978.	5.8	157
13	Role of Aniline Oligomeric Nanosheets in the Formation of Polyaniline Nanotubes. Macromolecules, 2010, 43, 662-670.	2.2	155
14	Structure Assignment in the Solid State by the Coupling of Quantum Chemical Calculations with NMR Experiments: Â A Columnar Hexabenzocoronene Derivative. Journal of the American Chemical Society, 2001, 123, 2597-2606.	6.6	145
15	G4-Quartet·M ⁺ Borate Hydrogels. Journal of the American Chemical Society, 2015, 137, 5819-5827.	6.6	140
16	NMR Crystallography of Campho[2,3-c]pyrazole ($\langle i \rangle Z \langle i \rangle \hat{a} \in ^2 = 6$): Combining High-Resolution $\langle \sup \rangle 1 \langle \sup \rangle 13 \langle \sup \rangle C$ Solid-State MAS NMR Spectroscopy and GIPAW Chemical-Shift Calculations. Journal of Physical Chemistry A, 2010, 114, 10435-10442.	1.1	127
17	Origins of linewidth in H1 magic-angle spinning NMR. Journal of Chemical Physics, 2006, 125, 144508.	1.2	121
18	Probing Hydrogen Bonding in Cocrystals and Amorphous Dispersions Using ¹⁴ N– ¹ H HMQC Solid-State NMR. Molecular Pharmaceutics, 2013, 10, 999-1007.	2.3	119

#	Article	IF	CITATIONS
19	Probing Protonâ-'Proton Proximities in the Solid State:Â High-Resolution Two-Dimensional1Hâ-'1H Double-Quantum CRAMPS NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126, 13230-13231.	6.6	118
20	Quantifying Weak Hydrogen Bonding in Uracil and 4-Cyano-4â€-ethynylbiphenyl:  A Combined Computational and Experimental Investigation of NMR Chemical Shifts in the Solid State. Journal of the American Chemical Society, 2008, 130, 945-954.	6.6	112
21	High-Resolution NMR Correlation Spectra of Disordered Solids. Journal of the American Chemical Society, 2003, 125, 4376-4380.	6.6	110
22	Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Communications, 2016, 7, 11656.	5.8	110
23	Determining hydrogen-bond strengths in the solid state by NMR: the quantitative measurement of homonuclear J couplings. Chemical Communications, 2002, , 1852-1853.	2.2	107
24	Supramolecular Assembly of Dendritic Polymers Elucidated by 1H and 13C Solid-State MAS NMR Spectroscopy. Journal of the American Chemical Society, 2003, 125, 13284-13297.	6.6	106
25	Structure and Dynamics of the Host-Guest Complex of a Molecular Tweezer: Coupling Synthesis, Solid-State NMR, and Quantum-Chemical Calculations. Angewandte Chemie - International Edition, 2001, 40, 717-720.	7.2	96
26	Probing intermolecular interactions and nitrogen protonation in pharmaceuticals by novel 15N-edited and 2D 14N-1H solid-state NMR. CrystEngComm, 2012, 14, 2654.	1.3	85
27	Principles of Spin-Echo Modulation byJ-Couplings in Magic-Angle-Spinning Solid-State NMR. ChemPhysChem, 2004, 5, 815-833.	1.0	84
28	Complete 1H resonance assignment of \hat{l}^2 -maltose from 1Hâ \in "1H DQ-SQ CRAMPS and 1H (DQ-DUMBO)â \in "13C refocused INEPT 2D solid-state NMR spectra and first principles GIPAW calculations. Physical Chemistry Chemical Physics, 2010, 12, 6970.	SQ 1.3	83
29	Through-space contributions to two-dimensional double-quantum J correlation NMR spectra of magic-angle-spinning solids. Journal of Chemical Physics, 2005, 122, 194313.	1.2	82
30	Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids. Journal of Physical Chemistry C, 2013, 117, 12258-12265.	1.5	81
31	An Investigation of the Hydrogen-Bonding Structure in Bilirubin by 1H Double-Quantum Magic-Angle Spinning Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2001, 123, 4275-4285.	6.6	78
32	The Direct Detection of a Hydrogen Bond in the Solid State by NMR through the Observation of a Hydrogen-Bond Mediated15Nâ°15NJCoupling. Journal of the American Chemical Society, 2002, 124, 1152-1153.	6.6	77
33	The refocused INADEQUATE MAS NMR experiment in multiple spin-systems: Interpreting observed correlation peaks and optimising lineshapes. Journal of Magnetic Resonance, 2007, 188, 24-34.	1.2	76
34	Probing Heteronuclear ¹⁵ Nâ^' ¹⁷ O and ¹³ Câ^' ¹⁷ O Connectivities and Proximities by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 1820-1834.	6.6	76
35	Recent Advances in Solidâ€5tate MAS NMR Methodology for Probing Structure and Dynamics in Polymeric and Supramolecular Systems. Macromolecular Rapid Communications, 2009, 30, 688-716.	2.0	7 5
36	Spinning-sideband patterns in multiple-quantum magic-angle spinning NMR spectroscopy. Molecular Physics, 1998, 95, 1209-1227.	0.8	72

3

#	Article	IF	CITATIONS
37	Identifying Guanosine Self Assembly at Natural Isotopic Abundance by High-Resolution ¹ H and ¹³ C Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2011, 133, 19777-19795.	6.6	72
38	Identifying the intermolecular hydrogen-bonding supramolecular synthons in an indomethacin–nicotinamide cocrystal by solid-state NMR. Chemical Communications, 2012, 48, 10844.	2.2	72
39	An NMR crystallography DFT-D approach to analyse the role of intermolecular hydrogen bonding and π–π interactions in driving cocrystallisation of indomethacin and nicotinamide. CrystEngComm, 2013, 15, 8797.	1.3	70
40	Probing the Molecular Architecture of <i>Arabidopsis thaliana</i> Secondary Cell Walls Using Two-and Three-Dimensional ¹³ C Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2015, 54, 2335-2345.	1.2	69
41	23Na NMR methods for selective observation of sodium ions in ordered environments. Progress in Nuclear Magnetic Resonance Spectroscopy, 1997, 30, 157-181.	3.9	67
42	Probing Intermolecular Crystal Packing in \hat{I}^3 -Indomethacin by High-Resolution 1H Solid-State NMR Spectroscopy. Crystal Growth and Design, 2011, 11, 3463-3471.	1.4	67
43	Determining relative proton–proton proximities from the build-up of two-dimensional correlation peaks in 1H double-quantum MAS NMR: insight from multi-spin density-matrix simulations. Physical Chemistry Chemical Physics, 2009, 11, 6941.	1.3	66
44	Distinguishing Anhydrous and Hydrous Forms of an Active Pharmaceutical Ingredient in a Tablet Formulation Using Solid‧tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2007, 46, 8036-8038.	7.2	65
45	Density Functional Theory Calculations of Hydrogen-Bond-Mediated NMR $\langle i \rangle J \langle i \rangle$ Coupling in the Solid State. Journal of the American Chemical Society, 2008, 130, 12663-12670.	6.6	63
46	The competing effects of π–π packing and hydrogen bonding in a hexabenzocoronene carboxylic acid derivative: A 1H solid-state MAS NMR investigation. Physical Chemistry Chemical Physics, 2000, 2, 1735-1745.	1.3	62
47	Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new $2\hat{a} \in \mathbb{Z}^2$ -deoxyguanosine structural motif. Chemical Science, 2017, 8, 3971-3979.	3.7	62
48	Quantifying hydrogen-bonding strength: the measurement of 2hJNN couplings in self-assembled guanosines by solid-state 15N spin-echo MAS NMR. Physical Chemistry Chemical Physics, 2007, 9, 3416.	1.3	60
49	Visualization and processing of computed solid-state NMR parameters: MagresView and MagresPython. Solid State Nuclear Magnetic Resonance, 2016, 78, 64-70.	1.5	57
50	A Study of a Molecular Tweezer Host–Guest System by a Combination of Quantum-Chemical Calculations and Solid-State NMR Experiments. Solid State Nuclear Magnetic Resonance, 2002, 22, 128-153.	1.5	55
51	Combining the Advantages of Powder X-ray Diffraction and NMR Crystallography in Structure Determination of the Pharmaceutical Material Cimetidine Hydrochloride. Crystal Growth and Design, 2016, 16, 1798-1804.	1.4	55
52	Structure of Molecular Tweezer Complexes in the Solid State:Â NMR Experiments, X-ray Investigations, and Quantum Chemical Calculations. Journal of the American Chemical Society, 2007, 129, 1293-1303.	6.6	53
53	Multiple-quantum cross-polarization in MAS NMR of quadrupolar nuclei. Chemical Physics Letters, 1998, 288, 509-517.	1.2	52
54	Investigation of an N��スH hydrogen bond in a solid benzoxazine dimer by1H-15N NMR correlation techniques under fast magic-angle spinning. Magnetic Resonance in Chemistry, 2001, 39, S5-S17.	1.1	51

#	Article	IF	Citations
55	Quantification of homonuclear dipolar coupling networks from magic-angle spinning 1H NMR. Molecular Physics, 2006, 104, 293-304.	0.8	51
56	³¹ P MAS Refocused INADEQUATE Spinâ^'Echo (REINE) NMR Spectroscopy: Revealing <i>J</i> Coupling and Chemical Shift Two-Dimensional Correlations in Disordered Solids. Journal of the American Chemical Society, 2009, 131, 11861-11874.	6.6	51
57	A 1H double-quantum magic-angle spinning solid-state NMR investigation of packing and dynamics in triphenylene and hexabenzocoronene derivatives. Journal of Molecular Structure, 2000, 521, 179-195.	1.8	49
58	An NMR crystallography study of the hemihydrate of $2\hat{a}\in ^2$, $3\hat{a}\in ^2$ -O-isopropylidineguanosine. Solid State Nuclear Magnetic Resonance, 2015, 65, 41-48.	1.5	48
59	Identification by15N Refocused INADEQUATE MAS NMR of Intermolecular Hydrogen Bonding that Directs the Self-Assembly of Modified DNA Bases. Journal of the American Chemical Society, 2005, 127, 16018-16019.	6.6	47
60	Residual Dipolar Couplings by Off-Magic-Angle Spinning in Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2007, 129, 10972-10973.	6.6	41
61	Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy. Journal of Solid State Chemistry, 2009, 182, 2402-2408.	1.4	41
62	Hydrogen Bonding in Alzheimer's Amyloidâ€Î² Fibrils Probed by ¹⁵ N{ ¹⁷ O} REAPDC Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 10289-10292.)R _{7.2}	41
63	Interplay of Noncovalent Interactions in Ribbon-like Guanosine Self-Assembly: An NMR Crystallography Study. Crystal Growth and Design, 2015, 15, 5945-5954.	1.4	40
64	Accurate Measurements of 13 Câ^'13 CJ-Couplings in the Rhodopsin Chromophore by Double-Quantum Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 3878-3879.	6.6	38
65	Fast Magic-Angle Spinning Three-Dimensional NMR Experiment for Simultaneously Probing H—H and N—H Proximities in Solids. Analytical Chemistry, 2016, 88, 11412-11419.	3.2	38
66	The 2D MAS NMR spin-echo experiment: the determination of 13C–13C J couplings in a solid-state cellulose sample. Journal of Magnetic Resonance, 2004, 171, 43-47.	1.2	35
67	Strong Intermolecular Ring Current Influence on ¹ H Chemical Shifts in Two Crystalline Forms of Naproxen: a Combined Solid-State NMR and DFT Study. Journal of Physical Chemistry C, 2013, 117, 17731-17740.	1.5	35
68	Towards homonuclear J solid-state NMR correlation experiments for half-integer quadrupolar nuclei: experimental and simulated 11B MAS spin-echo dephasing and calculated 2JBB coupling constants for lithium diborate. Physical Chemistry Chemical Physics, 2011, 13, 5778.	1.3	34
69	Improving Confidence in Crystal Structure Solutions Using NMR Crystallography: The Case of \hat{l}^2 -Piroxicam. Crystal Growth and Design, 2018, 18, 3339-3351.	1.4	34
70	Estimation of internuclear couplings in the solid-state NMR of multiple-spin systems. Selective spin echoes and off-magic-angle sample spinning. Chemical Physics Letters, 2008, 456, 116-121.	1.2	33
71	Determination of NMR interaction parameters from double rotation NMR. Journal of Magnetic Resonance, 2007, 188, 246-259.	1.2	31
72	27Al Multiple-Quantum Magic Angle Spinning NMR Study of the Thermal Transformation between the Microporous Aluminum Methylphosphonates AlMePO-β and AlMePO-α. Journal of Physical Chemistry B, 1999, 103, 812-817.	1.2	30

#	Article	IF	CITATIONS
73	Novel Tertiary Amine Oxide Surfaces That Resist Nonspecific Protein Adsorption. Langmuir, 2006, 22, 8144-8150.	1.6	29
74	CHHC and 1H–1H magnetization exchange: Analysis by experimental solid-state NMR and 11-spin density-matrix simulations. Journal of Magnetic Resonance, 2009, 199, 173-187.	1.2	29
75	Importance of Water in Maintaining Softwood Secondary Cell Wall Nanostructure. Biomacromolecules, 2021, 22, 4669-4680.	2.6	29
76	Coâ€existence of Distinct Supramolecular Assemblies in Solution and in the Solid State. Chemistry - A European Journal, 2017, 23, 2315-2322.	1.7	28
77	¹⁴ N– ¹ H Heteronuclear Multiple-Quantum Correlation Magic-Angle Spinning NMR Spectroscopy of Organic Solids. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1187-1204.	1.4	27
78	27Al double rotation two-dimensional spin diffusion NMR: Complete unambiguous assignment of aluminium sites in 9Al2O3·2B2O3. Chemical Physics Letters, 2006, 432, 152-156.	1.2	26
79	The use of a selective saturation pulse to suppress t 1 noise in two-dimensional 1 H fast magic angle spinning solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2015, 260, 89-97.	1.2	25
80	Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier. Journal of Magnetic Resonance, 2016, 265, 77-82.	1.2	25
81	¹⁴ Nâ€" ¹ H HMQC solid-state NMR as a powerful tool to study amorphous formulations â€" an exemplary study of paclitaxel loaded polymer micelles. Journal of Materials Chemistry B, 2020, 8, 6827-6836.	2.9	24
82	Insights into homonuclear decoupling from efficient numerical simulation: Techniques and examples. Journal of Magnetic Resonance, 2008, 192, 183-196.	1.2	23
83	<i>Ab initio</i> random structure searching of organic molecular solids: assessment and validation against experimental data. Physical Chemistry Chemical Physics, 2017, 19, 25949-25960.	1.3	23
84	Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of dithianon and pyrimethanil. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 149-156.	0.2	22
85	Weak Intermolecular CH···N Hydrogen Bonding: Determination of ¹³ CH– ¹⁵ N Hydrogen-Bond Mediated <i>J</i> Couplings by Solid-State NMR Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry A, 2020, 124, 560-572.	1.1	22
86	Revealing Intermolecular Hydrogen Bonding Structure and Dynamics in a Deep Eutectic Pharmaceutical by Magic-Angle Spinning NMR Spectroscopy. Molecular Pharmaceutics, 2020, 17, 622-631.	2.3	22
87	Separation of isotropic chemical and second-order quadrupolar shifts by multiple-quantum double rotation NMR. Journal of Magnetic Resonance, 2009, 197, 229-236.	1.2	21
88	Assessing the Detection Limit of a Minority Solid-State Form of a Pharmaceutical by 1H Double-Quantum Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of Pharmaceutical Sciences, 2017, 106, 3372-3377.	1.6	21
89	Probing Intermolecular Hydrogen Bonding in Sibenadet Hydrochloride Polymorphs by High-Resolution 1H Double-Quantum Solid-State NMR Spectroscopy. Journal of Pharmaceutical Sciences, 2012, 101, 1821-1830.	1.6	20
90	Advanced solid-state NMR methods for characterising structure and self-assembly in supramolecular chemistry, polymers and hydrogels. Current Opinion in Colloid and Interface Science, 2018, 33, 86-98.	3.4	20

#	Article	IF	Citations
91	Visualising crystal packing interactions in solid-state NMR: Concepts and applications. Journal of Chemical Physics, 2017, 147, 144203.	1.2	19
92	Low-load rotor-synchronised Hahn-echo pulse train (RS-HEPT)1H decoupling in solid-state NMR: factors affecting MAS spin-echo dephasing times. Magnetic Resonance in Chemistry, 2007, 45, S198-S208.	1.1	18
93	Longer-range distances by spinning-angle-encoding solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 4514.	1.3	17
94	Nanodiamond Promotes Surfactant-Mediated Triglyceride Removal from a Hydrophobic Surface at or below Room Temperature. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3225-3232.	4.0	17
95	MAS NMR Investigation of Molecular Order in an Ionic Liquid Crystal. Journal of Physical Chemistry B, 2020, 124, 4975-4988.	1.2	17
96	Amyloid Hydrogen Bonding Polymorphism Evaluated by 15N{17O}REAPDOR Solid-State NMR and Ultra-High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Biochemistry, 2016, 55, 2065-2068.	1.2	16
97	An XRD and NMR crystallographic investigation of the structure of 2,6-lutidinium hydrogen fumarate. CrystEngComm, 2019, 21, 3502-3516.	1.3	16
98	Structure Effects on the Ionicity of Protic Ionic Liquids. ChemPhysChem, 2020, 21, 1444-1454.	1.0	16
99	In Vivo NMR of Sodium Ions in Ordered Environments. Journal of Magnetic Resonance Series B, 1994, 105, 199-203.	1.6	15
100	The determination of 170 NMR parameters of hydroxyl oxygen: A combined deuteration and DOR approach. Magnetic Resonance in Chemistry, 2007, 45, S68-S72.	1.1	15
101	Quantification of crystalline phases and measurement of phosphate chain lengths in a mixed phase sample by 31P refocused INADEQUATE MAS NMR. Chemical Physics Letters, 2008, 455, 178-183.	1.2	15
102	Self-Assembled Oligoanilinic Nanosheets: Molecular Structure Revealed by Solid-State NMR Spectroscopy. Macromolecules, 2015, 48, 8838-8843.	2.2	15
103	NMR measurement of spin-3/2 transverse relaxation in an inhomogeneous B1 field. Chemical Physics Letters, 1994, 224, 508-516.	1.2	13
104	Rotor-Encoded Heteronuclear MQ MAS NMR Spectroscopy of Half-Integer Quadrupolar and Spin I=1/2 Nuclei. Journal of Magnetic Resonance, 2002, 154, 101-129.	1.2	13
105	Investigating discrepancies between experimental solid-state NMR and GIPAW calculation: N C–N 13C and OHâ√O 1H chemical shifts in pyridinium fumarates and their cocrystals. Solid State Nuclear Magnetic Resonance, 2020, 108, 101662.	1.5	13
106	³⁵ Clâ€" ¹ H Heteronuclear correlation magicâ€angle spinning nuclear magnetic resonance experiments for probing pharmaceutical salts. Magnetic Resonance in Chemistry, 2021, 59, 1089-1100.	1.1	11
107	Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS 1 H solid-state NMR spectroscopy and GIPAW calculations. Solid State Nuclear Magnetic Resonance, 2017, 87, 73-79.	1.5	10
108	A Tautoleptic Approach to Chiral Hydrogenâ€Bonded Supramolecular Tubular Polymers with Large Cavity. Chemistry - A European Journal, 2018, 24, 14028-14033.	1.7	10

#	Article	IF	Citations
109	Modulation of Transmembrane Domain Interactions in Neu Receptor Tyrosine Kinase by Membrane Fluidity and Cholesterol. Journal of Membrane Biology, 2019, 252, 357-369.	1.0	10
110	An NMR crystallography investigation of furosemide. Magnetic Resonance in Chemistry, 2019, 57, 191-199.	1.1	10
111	Synergy of Solid-State NMR, Single-Crystal X-ray Diffraction, and Crystal Structure Prediction Methods: A Case Study of Teriflunomide (TFM). Crystal Growth and Design, 2021, 21, 3328-3343.	1.4	10
112	Inhomogeneous broadening of two-dimensional NMR lineshapes. Chemical Physics Letters, 1995, 237, 509-515.	1.2	9
113	The use of variable temperature <scp>¹³C</scp> solidâ€state <scp>MAS NMR</scp> and <scp>GIPAW DFT</scp> calculations to explore the dynamics of diethylcarbamazine citrate. Magnetic Resonance in Chemistry, 2019, 57, 200-210.	1.1	9
114	Magic-angle spinning NMR spectroscopy provides insight into the impact of small molecule uptake by G-quartet hydrogels. Materials Advances, 2020, 1, 2236-2247.	2.6	8
115	Unexpected effects of third-order cross-terms in heteronuclear spin systems under simultaneous radio-frequency irradiation and magic-angle spinning NMR. Journal of Chemical Physics, 2012, 136, 084503.	1.2	7
116	Rationalising Heteronuclear Decoupling in Refocussing Applications of Solidâ€State NMR Spectroscopy. ChemPhysChem, 2017, 18, 394-405.	1.0	7
117	A curious case of dynamic disorder in pyrrolidine rings elucidated by NMR crystallography. Chemical Communications, 2020, 56, 14039-14042.	2.2	7
118	Taming the dynamics in a pharmaceutical by cocrystallization: investigating the impact of the coformer by solid-state NMR. CrystEngComm, 2021, 23, 6859-6870.	1.3	7
119	Extraction of Homogeneous23Na NMR Linewidths from Two-Dimensional Jeener–Broekaert Spectra*. Journal of Magnetic Resonance Series B, 1995, 109, 291-300.	1.6	6
120	Coexistence of Distinct Supramolecular Assemblies in Solution and in the Solid State. Chemistry - A European Journal, 2017, 23, 2235-2235.	1.7	6
121	A combined NMR crystallographic and PXRD investigation of the structure-directing role of water molecules in orotic acid and its lithium and magnesium salts. CrystEngComm, 2017, 19, 224-236.	1.3	6
122	Simulating spin dynamics in organic solids under heteronuclear decoupling. Solid State Nuclear Magnetic Resonance, 2015, 70, 28-37.	1.5	5
123	Conformations in Solution and in Solid-State Polymorphs: Correlating Experimental and Calculated Nuclear Magnetic Resonance Chemical Shifts for Tolfenamic Acid. Journal of Physical Chemistry A, 2020, 124, 8959-8977.	1.1	5
124	A toolbox for improving the workflow of NMR crystallography. Solid State Nuclear Magnetic Resonance, 2021, 116, 101761.	1.5	5
125	Combining heteronuclear correlation NMR with spin-diffusion to detect relayed Cl–H–H and N–H–H proximities in molecular solids. Solid State Nuclear Magnetic Resonance, 2022, , 101808.	1.5	5
126	5â€aminoâ€2â€methylpyridinium hydrogen fumarate: An XRD and NMR crystallography analysis. Magnetic Resonance in Chemistry, 2020, 58, 1026-1035.	1.1	4

#	Article	IF	CITATIONS
127	Erratum to "23Na NMR methods for selective observation of sodium ions in ordered environmentsâ€. Progress in Nuclear Magnetic Resonance Spectroscopy, 1997, 31, 287.	3.9	3
128	Improving the sensitivity of J coupling measurements in solids with application to disordered materials. AIP Advances, 2016, 6, 055008.	0.6	3
129	Strong-coupling induced damping of spin-echo modulations in magic-angle-spinning NMR: Implications for J coupling measurements in disordered solids. Journal of Magnetic Resonance, 2017, 283, 22-32.	1.2	3
130	Simultaneous MQMAS NMR Experiments for Two Half-Integer Quadrupolar Nuclei. Journal of Magnetic Resonance, 2020, 320, 106831.	1.2	2
131	Chapter 2. High-resolution ¹ H 2D Magic-angle Spinning Techniques for Organic Solids. New Developments in NMR, 2018, , 39-74.	0.1	2
132	Structure and Dynamics of the Host–Guest Complex of a Molecular Tweezer: Coupling Synthesis, Solid-State NMR, and Quantum-Chemical Calculations. Angewandte Chemie - International Edition, 2001, 40, 717-720.	7.2	1
133	Reply to Comment on "27Al Multiple-Quantum Magic Angle Spinning NMR Study of the Thermal Transformation between the Microporous Aluminum Methylphosphonates AlMePO-β and AlMePO-α― Journal of Physical Chemistry B, 2000, 104, 9767-9767.	1.2	0
134	Increasing the accuracy of structural investigations by MAS spin-echo solid-state NMR experiments. Journal of Physics: Conference Series, 2009, 182, 012025.	0.3	0
135	Frontispiece: A Tautoleptic Approach to Chiral Hydrogenâ€Bonded Supramolecular Tubular Polymers with Large Cavity. Chemistry - A European Journal, 2018, 24, .	1.7	O
136	Isolated zirconium centres captured from aqueous solution: the structure of zirconium mandelate revealed from NMR crystallography. Chemical Communications, 2020, 56, 10159-10162.	2.2	O