## Nacer Chahat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8171875/publications.pdf Version: 2024-02-01



ΝΛΟΕΡ ΟΗΛΗΛΤ

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Millimeter-wave interactions with the human body: state of knowledge and recent advances.<br>International Journal of Microwave and Wireless Technologies, 2011, 3, 237-247.                     | 1.9 | 187       |
| 2  | A Deployable High-Gain Antenna Bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars. IEEE Antennas and Propagation Magazine, 2017, 59, 39-49.        | 1.4 | 150       |
| 3  | CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions. IEEE<br>Transactions on Antennas and Propagation, 2016, 64, 2083-2093.                                 | 5.1 | 146       |
| 4  | Wearable Endfire Textile Antenna for On-Body Communications at 60 GHz. IEEE Antennas and Wireless<br>Propagation Letters, 2012, 11, 799-802.                                                     | 4.0 | 106       |
| 5  | Additive Manufactured Metal-Only Modulated Metasurface Antennas. IEEE Transactions on Antennas and Propagation, 2018, 66, 6106-6114.                                                             | 5.1 | 67        |
| 6  | Advanced CubeSat Antennas for Deep Space and Earth Science Missions: A review. IEEE Antennas and<br>Propagation Magazine, 2019, 61, 37-46.                                                       | 1.4 | 67        |
| 7  | The Deep-Space Network Telecommunication CubeSat Antenna: Using the deployable Ka-band mesh reflector antenna. IEEE Antennas and Propagation Magazine, 2017, 59, 31-38.                          | 1.4 | 65        |
| 8  | Broadband Tissue-Equivalent Phantom for BAN Applications at Millimeter Waves. IEEE Transactions on<br>Microwave Theory and Techniques, 2012, 60, 2259-2266.                                      | 4.6 | 61        |
| 9  | 1.9-THz Multiflare Angle Horn Optimization for Space Instruments. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 914-921.                                                       | 3.1 | 40        |
| 10 | RainCube: the first ever radar measurements from a CubeSat in space. Journal of Applied Remote<br>Sensing, 2019, 13, 1.                                                                          | 1.3 | 40        |
| 11 | All-Metal Dual-Frequency RHCP High-Gain Antenna for a Potential Europa Lander. IEEE Transactions on<br>Antennas and Propagation, 2018, 66, 6791-6798.                                            | 5.1 | 37        |
| 12 | New Method for Determining Dielectric Properties of Skin and Phantoms at Millimeter Waves Based<br>on Heating Kinetics. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 827-832. | 4.6 | 33        |
| 13 | One-Meter Deployable Mesh Reflector for Deep-Space Network Telecommunication at \${X}\$ -Band and<br>\$Ka\$ -Band. IEEE Transactions on Antennas and Propagation, 2020, 68, 727-735.             | 5.1 | 32        |
| 14 | Electromagnetic dosimetry for adult and child models within a car: multi-exposure scenarios.<br>International Journal of Microwave and Wireless Technologies, 2011, 3, 707-715.                  | 1.9 | 18        |
| 15 | X-Band Choke Ring Horn Telecom Antenna for Interference Mitigation on NASA's SWOT Mission. IEEE<br>Transactions on Antennas and Propagation, 2016, 64, 2075-2082.                                | 5.1 | 17        |
| 16 | End-Fire Antenna for BAN at 60 GHz: Impact of Bending, On-Body Performances, and Study of an On to<br>Off-Body Scenario. Electronics (Switzerland), 2014, 3, 221-233.                            | 3.1 | 12        |
| 17 | Efficient CMOS Systems With Beam–Lead Interconnects for Space Instruments. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 637-644.                                              | 3.1 | 9         |
| 18 | From Prototype to Flight: Qualifying a Ka-band Parabolic Deployable Antenna (KaPDA) for CubeSats. , 2017, , .                                                                                    |     | 7         |

NACER CHAHAT

| #  | Article                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Mars Helicopter Telecommunication Link: Antennas, Propagation, and Link Analysis. IEEE Antennas and Propagation Magazine, 2020, 62, 12-22. | 1.4 | 7         |
| 20 | One meter deployable reflectarray antenna for earth science radars. , 2017, , .                                                                |     | 5         |
| 21 | Deployment Mechanisms for High Packing Efficiency One-Meter Reflectarray Antenna (OMERA). , 2019, , .                                          |     | 5         |
| 22 | Terahertz Antennas and Feeds. Signals and Communication Technology, 2018, , 335-386.                                                           | 0.5 | 4         |
| 23 | Integration, Test, and On-Orbit Operation of a Ka-band Parabolic Deployable Antenna (KaPDA) for<br>CubeSats. , 2020, , .                       |     | 3         |
| 24 | Metal-only modulated metasurface antenna for Cubesat platforms. , 2019, , .                                                                    |     | 2         |
| 25 | Some recent developments on modulated metasurface antennas. , 2019, , .                                                                        |     | 1         |
| 26 | Dare Mighty Things: Fly on Mars [Young Professionals]. IEEE Antennas and Propagation Magazine, 2021, 63, 142-145.                              | 1.4 | 0         |