Vladimir Komlev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8171447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorganic Materials, 2002, 38, 973-984.	0.8	262
2	Tissue engineering of bone: search for a better scaffold. Orthodontics and Craniofacial Research, 2005, 8, 277-284.	2.8	215
3	A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials, 2002, 23, 3449-3454.	11.4	178
4	Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials, 2007, 28, 2505-2524.	11.4	110
5	Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior. ACS Applied Materials & Interfaces, 2014, 6, 16610-16620.	8.0	85
6	Micro-CT studies on 3-D bioactive glass–ceramic scaffolds for bone regeneration. Acta Biomaterialia, 2009, 5, 1328-1337.	8.3	79
7	Porous hydroxyapatite ceramics of bi-modal pore size distribution. Journal of Materials Science: Materials in Medicine, 2002, 13, 295-299.	3.6	74
8	Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: An Xâ€ray computed microtomography study. Biotechnology and Bioengineering, 2007, 98, 271-281.	3.3	65
9	Kinetics ofIn VivoBone Deposition by Bone Marrow Stromal Cells into Porous Calcium Phosphate Scaffolds: An X-Ray Computed Microtomography Study. Tissue Engineering, 2006, 12, 3449-3458.	4.6	63
10	Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. Biomaterials, 2009, 30, 2411-2419.	11.4	61
11	Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph. , 2010, 19, 136-146.		55
12	Porous spherical hydroxyapatite and fluorhydroxyapatite granules: processing and characterization. Science and Technology of Advanced Materials, 2003, 4, 503-508.	6.1	54
13	Calcium phosphate bone cements. Inorganic Materials, 2011, 47, 1470-1485.	0.8	54
14	High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution. Journal of Biomedical Materials Research Part B, 2004, 70B, 332-339.	3.1	53
15	Physicochemical Investigation of Pulsed Laser Deposited Carbonated Hydroxyapatite Films on Titanium. ACS Applied Materials & Interfaces, 2009, 1, 1813-1820.	8.0	47
16	Fe-doped hydroxyapatite coatings for orthopedic and dental implant applications. Applied Surface Science, 2014, 307, 301-305.	6.1	46
17	Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering. Biomedical Materials (Bristol), 2018, 13, 025007.	3.3	42
18	3D Printing of Octacalcium Phosphate Bone Substitutes. Frontiers in Bioengineering and Biotechnology, 2015, 3, 81.	4.1	40

#	Article	IF	CITATIONS
19	Interactions of calcium phosphates with chitosan. Doklady Chemistry, 2011, 441, 387-390.	0.9	39
20	Bioactive Materials for Bone Tissue Engineering. BioMed Research International, 2016, 2016, 1-3.	1.9	39
21	The shear strength of three-dimensional capillary-porous titanium coatings for intraosseous implants. Materials Science and Engineering C, 2016, 60, 255-259.	7.3	38
22	High-resolution X-ray microtomography for three-dimensional visualization of human stem cell muscle homing. FEBS Letters, 2006, 580, 5759-5764.	2.8	37
23	3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate. Beilstein Journal of Nanotechnology, 2016, 7, 1794-1799.	2.8	37
24	Synchrotron Radiation Microtomography of Bone Engineered from Bone Marrow Stromal Cells. Tissue Engineering, 2004, 10, 1767-1774.	4.6	36
25	Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties. Journal of Functional Biomaterials, 2016, 7, 10.	4.4	36
26	The enhancement of hydroxyapatite thermal stability by Al doping. Journal of Materials Research and Technology, 2020, 9, 76-88.	5.8	35
27	Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation. Journal of Materials Science Letters, 2003, 22, 1215-1217.	0.5	34
28	Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skeliteâ,,¢) for late healing of critical size rabbit calvarial defects. Journal of Cranio-Maxillo-Facial Surgery, 2014, 42, e70-e79.	1.7	33
29	Micro CT-based multiscale elasticity of double-porous (pre-cracked) hydroxyapatite granules for regenerative medicine. Journal of Biomechanics, 2012, 45, 1068-1075.	2.1	32
30	Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomedical Materials (Bristol), 2014, 9, 055005.	3.3	32
31	X-Ray Synchrotron Radiation Pseudo-Holotomography as a New Imaging Technique to Investigate Angio- and Microvasculogenesis with No Usage of Contrast Agents. Tissue Engineering - Part C: Methods, 2009, 15, 425-430.	2.1	31
32	Organization of Extracellular Matrix Fibers Within Polyglycolic Acid–Polylactic Acid Scaffolds Analyzed Using X-Ray Synchrotron-Radiation Phase-Contrast Micro Computed Tomography. Tissue Engineering - Part C: Methods, 2009, 15, 403-411.	2.1	31
33	Osteoinductive ceramic materials for bone tissue restoration: Octacalcium phosphate (review). Inorganic Materials: Applied Research, 2010, 1, 175-181.	0.5	29
34	Engineered bone from bone marrow stromal cells: a structural study by an advanced x-ray microdiffraction technique. Physics in Medicine and Biology, 2006, 51, N109-N116.	3.0	28
35	Zinc-releasing calcium phosphate cements for bone substitute materials. Ceramics International, 2016, 42, 17310-17316.	4.8	28
36	Influence of Al on the Structure and in Vitro Behavior of Hydroxyapatite Nanopowders. Journal of Physical Chemistry B, 2019, 123, 9143-9154.	2.6	26

#	Article	IF	CITATIONS
37	Orientation of mineral crystals by collagen fibers during in vivo bone engineering: An X-ray diffraction imaging study. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 642-647.	2.9	25
38	In Situ Time-Resolved Studies of Octacalcium Phosphate and Dicalcium Phosphate Dihydrate in Simulated Body Fluid: Cooperative Interactions and Nanoapatite Crystal Growth. Crystal Growth and Design, 2010, 10, 3824-3834.	3.0	25
39	Structure of the hydroxyapatite plasma-sprayed coatings deposited on pre-heated titanium substrates. Ceramics International, 2017, 43, 9105-9109.	4.8	25
40	Mesoporous Iron(III)-Doped Hydroxyapatite Nanopowders Obtained via Iron Oxalate. Nanomaterials, 2021, 11, 811.	4.1	25
41	High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e168-e178.	2.7	23
42	In situ magnesium calcium phosphate cements formation: From one pot powders precursors synthesis to in vitro investigations. Bioactive Materials, 2020, 5, 644-658.	15.6	23
43	Plasma sprayed hydroxyapatite coatings from nanostructured granules. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 86-90.	3.5	22
44	Structural Study of Octacalcium Phosphate Bone Cement Conversion in Vitro. ACS Applied Materials & Interfaces, 2012, 4, 6202-6210.	8.0	22
45	Approaches to the fabrication of calcium phosphate-based porous materials for bone tissue regeneration. Inorganic Materials, 2016, 52, 339-346.	0.8	22
46	Multimodalâ€3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 750-761.	2.7	22
47	3D Printed Gene-activated Octacalcium Phosphate Implants for Large Bone Defects Engineering. International Journal of Bioprinting, 2020, 6, 275.	3.4	22
48	Effect of the concentration of carbonate groups in a carbonate hydroxyapatite ceramic on its in vivo behavior. Inorganic Materials, 2009, 45, 329-334.	0.8	21
49	Fabrication of calcium phosphate 3D scaffolds for bone repair using magnetic levitational assembly. Scientific Reports, 2020, 10, 4013.	3.3	21
50	Stabilization of Carbonate Hydroxyapatite by Isomorphic Substitutions of Sodium for Calcium. Russian Journal of Inorganic Chemistry, 2008, 53, 164-168.	1.3	20
51	Single-phase bone cement based on dicalcium phosphate dihydrate powder and sodium silicate solution. Materials Letters, 2012, 73, 115-118.	2.6	19
52	Iron-Doped Mesoporous Powders of Hydroxyapatite as Molybdenum-Impregnated Catalysts for Deep Oxidative Desulfurization of Model Fuel: Synthesis and Experimental and Theoretical Studies. Journal of Physical Chemistry C, 2021, 125, 11604-11619.	3.1	19
53	Real-time monitoring of the mechanism of poorly crystalline apatite cement conversion in the presence of chitosan, simulated body fluid and human blood. Dalton Transactions, 2010, 39, 11412.	3.3	18
54	Synthesis of octacalcium phosphate by precipitation from solution. Doklady Chemistry, 2010, 432, 178-182.	0.9	18

#	Article	IF	CITATIONS
55	Anomalous Hardening Behavior of a Calcium Phosphate Bone Cement. Journal of Physical Chemistry B, 2010, 114, 973-979.	2.6	18
56	Carbonate loss from two magnesium-substituted carbonated apatites prepared by different synthesis techniques. Materials Research Bulletin, 2006, 41, 485-494.	5.2	17
57	Kinetics of the release of antibiotics from chitosan-based biodegradable biopolymer membranes. Doklady Chemistry, 2015, 465, 278-280.	0.9	17
58	Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment. Bioactive Materials, 2017, 2, 101-107.	15.6	17
59	Bringing a Gene-Activated Bone Substitute Into Clinical Practice: From Bench to Bedside. Frontiers in Bioengineering and Biotechnology, 2021, 9, 599300.	4.1	16
60	Structure and shear strength of implants with plasma coatings. Inorganic Materials: Applied Research, 2016, 7, 376-387.	0.5	15
61	Mechanical properties of nanostructured nitinol/chitosan composite material. Inorganic Materials: Applied Research, 2014, 5, 344-346.	0.5	14
62	Strength increase during ceramic biomaterial-induced bone regeneration: a micromechanical study. International Journal of Fracture, 2016, 202, 217-235.	2.2	14
63	Radiation-Induced Stable Radicals in Calcium Phosphates: Results of Multifrequency EPR, EDNMR, ESEEM, and ENDOR Studies. Applied Sciences (Switzerland), 2021, 11, 7727.	2.5	14
64	Structural changes during the hydrolysis of dicalcium phosphate dihydrate to octacalcium phosphate and hydroxyapatite. Inorganic Materials, 2015, 51, 355-361.	0.8	13
65	3D printing of ceramic scaffolds for engineering of bone tissue. Inorganic Materials: Applied Research, 2015, 6, 316-322.	0.5	13
66	<i>In Vitro</i> Study of Octacalcium Phosphate Behavior in Different Model Solutions. ACS Omega, 2021, 6, 7487-7498.	3.5	13
67	High spatial resolution X-ray microdiffraction applied to biomaterial studies and archeometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1557-1564.	2.9	12
68	Scaffold-free, Label-free, and Nozzle-free Magnetic Levitational Bioassembler for Rapid Formative Biofabrication of 3D Tissues and Organs. International Journal of Bioprinting, 2020, 6, 304.	3.4	12
69	Extracellular matrix deposition and scaffold biodegradation in an in vitro three-dimensional model of bone by X-ray computed microtomography. Journal of Tissue Engineering and Regenerative Medicine, 2012, 8, n/a-n/a.	2.7	11
70	Calcium phosphate blossom for bone tissue engineering. Materials Today, 2014, 17, 96-97.	14.2	11
71	The Influence of Co Additive on the Sintering, Mechanical Properties, Cytocompatibility, and Digital Light Processing Based Stereolithography of 3Y-TZP-5Al2O3 Ceramics. Materials, 2020, 13, 2789.	2.9	11
72	Study of Electron–Nuclear Interactions in Doped Calcium Phosphates by Various Pulsed EPR Spectroscopy Techniques. ACS Omega, 2021, 6, 25338-25349.	3.5	11

#	Article	IF	CITATIONS
73	Nanosized hydroxyapatite synthesized by precipitation in a gelatin solution. Doklady Chemistry, 2006, 411, 219-222.	0.9	10
74	Bioactive composite ceramics in the hydroxyapatite-tricalcium phosphate system. Doklady Chemistry, 2007, 413, 72-74.	0.9	10
75	Some applications of nanotechnologies in stem cells research. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 139-147.	3.5	10
76	In situ time-resolved X-ray diffraction study of octacalcium phosphate transformations under physiological conditions. Journal of Crystal Growth, 2010, 312, 2113-2116.	1.5	10
77	Phase and structural transformations in corrosion-resistant steels upon high-pressure torsion and heating. Russian Metallurgy (Metally), 2012, 2012, 763-771.	0.5	10
78	Preparation of octacalcium phosphate from calcium carbonate powder. Inorganic Materials, 2013, 49, 1148-1151.	0.8	10
79	Hydroxyapatite-based coatings for intraosteal implants. Inorganic Materials: Applied Research, 2016, 7, 486-492.	0.5	10
80	Trends in Development of Bioresorbable Calcium Phosphate Ceramic Materials for Bone Tissue Engineering. Polymer Science - Series D, 2018, 11, 419-422.	0.6	10
81	Study of the crystal structure of hydroxyapatite in plasma coating. Surface and Coatings Technology, 2019, 372, 201-208.	4.8	10
82	Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants. Surface and Coatings Technology, 2020, 383, 125192.	4.8	10
83	Increasing the Sintering Rate and Strength of ZrO2–Al2O3 Ceramic Materials by Iron Oxide Additions. Inorganic Materials, 2020, 56, 182-189.	0.8	10
84	Sodium alginate-based composites as a collagen substitute for skin bioengineering. Biomedical Materials (Bristol), 2021, 16, 015002.	3.3	10
85	The improved textural properties, thermal stability, and cytocompatibility of mesoporous hydroxyapatite by Mg2+ doping. Materials Chemistry and Physics, 2022, 289, 126461.	4.0	10
86	Apatite formation in the reaction-setting mixture of Ca(OH)2?KH2PO4 system. Journal of Biomedical Materials Research Part B, 2004, 70A, 303-308.	3.1	9
87	Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials. Bulletin of Experimental Biology and Medicine, 2008, 146, 139-143.	0.8	9
88	Phase Development During Setting and Hardening of a Bone Cement Based on $\hat{I}\pm$ -Tricalcium and Octacalcium Phosphates. Journal of Biomaterials Applications, 2012, 26, 1051-1068.	2.4	9
89	Selective laser sintering of bioactive composite matrices for bone tissue engineering. Inorganic Materials: Applied Research, 2015, 6, 171-178.	0.5	9
90	Preparation and Properties of Copper-Substituted Hydroxyapatite Powders and Ceramics. Inorganic Materials, 2019, 55, 1061-1067.	0.8	9

#	Article	IF	CITATIONS
91	X-ray micro-diffraction analysis of reconstructed bone at Zr prosthetic surface with sub-micrometre spatial resolution. Physics in Medicine and Biology, 2003, 48, N37-N48.	3.0	8
92	High-porous calcium phosphate bioceramics reinforced by chitosan infiltration. Doklady Chemistry, 2011, 439, 233-236.	0.9	8
93	Zinc- and silver-substituted hydroxyapatite: Synthesis and properties. Doklady Chemistry, 2012, 442, 63-65.	0.9	8
94	Effect of hot pressing temperature on the microstructure and strength of hydroxyapatite ceramic. Inorganic Materials: Applied Research, 2013, 4, 362-367.	0.5	8
95	Modification of bone cements in the calcium phosphate-chitosan systems by ceramic and alginate beads. Doklady Chemistry, 2015, 461, 104-107.	0.9	8
96	Multiscale Mathematical Modeling in Dental Tissue Engineering: Toward Computer-Aided Design of a Regenerative System Based on Hydroxyapatite Granules, Focussing on Early and Mid-Term Stiffness Recovery. Frontiers in Physiology, 2016, 7, 383.	2.8	8
97	3D printing of mineral-polymer structures based on calcium phosphate and polysaccharides for tissue engineering. Inorganic Materials: Applied Research, 2016, 7, 240-243.	0.5	8
98	The shear strength of Ti–HA composite coatings for intraosseous implants. Inorganic Materials: Applied Research, 2017, 8, 296-304.	0.5	8
99	Octacalcium Phosphate for Bone Tissue Engineering: Synthesis, Modification, and In Vitro Biocompatibility Assessment. International Journal of Molecular Sciences, 2021, 22, 12747.	4.1	8
100	Porous Ceramic Granules of Hydroxyapatite. Refractories and Industrial Ceramics, 2001, 42, 195-197.	0.6	7
101	New calcium phosphate cements based on tricalcium phosphate. Doklady Chemistry, 2011, 437, 75-78.	0.9	7
102	Fracture safety of double-porous hydroxyapatite biomaterials. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 24-36.	0.9	7
103	Mechanosynthesis of hydroxyapatite–ferrite composite nanopowder. Ceramics International, 2017, 43, 6221-6231.	4.8	7
104	The boundary between the hydroxyapatite coating and titanium substrate. Inorganic Materials: Applied Research, 2017, 8, 444-451.	0.5	7
105	3D bioactive coatings with a new type of porous ridge/cavity structure. Materialia, 2021, 15, 101018.	2.7	7
106	Study of radiation-induced stable radicals in synthetic octacalcium phosphate by pulsed EPR. Magnetic Resonance in Solids, 2019, 21, .	0.2	7
107	Magnesium distribution in the synthesis of biphasic calcium phosphates. Doklady Chemistry, 2008, 418, 44-46.	0.9	6
108	Synthesis of calcium phosphates on chitosan macromolecules in the presence of amino acids. Doklady Chemistry, 2013, 451, 207-210.	0.9	6

#	Article	IF	CITATIONS
109	Structure of hydroxyapatite powders prepared through dicalcium phosphate dihydrate hydrolysis. Inorganic Materials, 2016, 52, 170-175.	0.8	6
110	In vitro study of matrix surface properties of porous granulated calcium phosphate ceramic materials made in Russia. Bulletin of Experimental Biology and Medicine, 2008, 145, 499-503.	0.8	5
111	Three-Dimensional Imaging by Microtomography of X-ray Synchrotron Radiation and Neutrons. , 2010, , 123-177.		5
112	<i>In Situ</i> Time-Resolved Energy Dispersive X-Ray Diffraction Studies of Calcium Phosphate Based Bone Cements. Key Engineering Materials, 0, 541, 115-120.	0.4	5
113	Investigation of physicochemical and biological properties of composite matrices in a alginate–calcium phosphate system intended for use in prototyping technologies during replacement of bone defects. Inorganic Materials: Applied Research, 2016, 7, 630-634.	0.5	5
114	Effect of titanium and zirconium substitutions for calcium on the formation and structure of tricalcium phosphate and hydroxyapatite. Inorganic Materials, 2017, 53, 1254-1260.	0.8	5
115	Calcium phosphate composite cements based on simple mixture of brushite and apatite phases. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012039.	0.6	5
116	Porous Ceramic Granules of Hydroxyapatite. Refractories and Industrial Ceramics, 2001, 42, 242-244.	0.6	4
117	Bioactive ceramic composite materials in hydroxyapatite-tricalcium phosphate system. Inorganic Materials: Applied Research, 2010, 1, 182-187.	0.5	4
118	High-porous composites in the biopolymer-calcite system for the use in tissue engineering. Doklady Chemistry, 2011, 437, 72-74.	0.9	4
119	Hybrid composite materials based on chitosan and gelatin and reinforced with hydroxyapatite for tissue engineering. Inorganic Materials: Applied Research, 2011, 2, 85-90.	0.5	4
120	Effect of thermal treatment on sintering and strength of ceramics from hydroxyapatite nanopowders. Inorganic Materials: Applied Research, 2011, 2, 377-380.	0.5	4
121	Composite bone cement in the calcium phosphates-chitosan system. Doklady Chemistry, 2013, 448, 68-70.	0.9	4
122	Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue. Bulletin of Experimental Biology and Medicine, 2015, 159, 494-497.	0.8	4
123	Composite hydrogels based on alginate-reinforced calcium phosphate ceramics for tissue engineering. Inorganic Materials: Applied Research, 2017, 8, 47-49.	0.5	4
124	Highly porous bioceramics based on octacalcium phosphate. Inorganic Materials: Applied Research, 2017, 8, 723-726.	0.5	4
125	Composite Coatings Based on Low-Temperature Calcium Phosphates for Intraosseous Implants. Inorganic Materials: Applied Research, 2018, 9, 88-91.	0.5	4
126	Influence of Substrate Temperature and Hydrothermal Treatment on the Phase Composition of Plasma-Sprayed Phosphate Coatings. Inorganic Materials, 2021, 57, 598-602.	0.8	4

#	Article	IF	CITATIONS
127	Bone Cements Based on Struvite: The Effect of Vancomycin Loading and Assessment of Biocompatibility and Osteoconductive Potentials In Vivo. Russian Journal of Inorganic Chemistry, 2021, 66, 1079-1090.	1.3	4
128	X-Ray Diffraction and Multifrequency EPR Study of Radiation-Induced Room Temperature Stable Radicals in Octacalcium Phosphate. Radiation Research, 2020, 195, 200-210.	1.5	4
129	An Experimental Device for Studying the 3D Cryoprinting Processes. Instruments and Experimental Techniques, 2020, 63, 890-892.	0.5	4
130	Bioceramic granules with controlled resorbability for bone tissue therapy. Doklady Chemistry, 2006, 409, 124-127.	0.9	3
131	Structural transformations in hydroxyapatite ceramics as a result of severe plastic deformation. Ceramics International, 2015, 41, 10526-10530.	4.8	3
132	Discussion: Fracture safety of double-porous hydroxyapatite biomaterials. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 176-177.	0.9	3
133	Formation of composite scaffolds based on chitosan and calcium phosphate. Doklady Chemistry, 2016, 469, 215-218.	0.9	3
134	In situ formation of porous mineral–polymer scaffold for tissue engineering. Doklady Chemistry, 2017, 474, 126-128.	0.9	3
135	Gene-Activated Bone Substitute Based on Octacalcium Phosphate and Doped with Magnesium Ions. Inorganic Materials: Applied Research, 2018, 9, 70-74.	0.5	3
136	Radiation induced paramagnetic radicals in synthetic octacalcium phosphate. IOP Conference Series: Earth and Environmental Science, 2018, 155, 012018.	0.3	3
137	Bioactivity and effect of bone formation for octacalcium phosphate ceramics. , 2020, , 85-119.		3
138	Ceramic Materials in the Tricalcium Phosphate–Trimagnesium Phosphate System. Inorganic Materials, 2020, 56, 314-320.	0.8	3
139	The Creation and Application Outlook of Calcium Phosphate and Magnesium Phosphate Bone Cements with Antimicrobial Properties (Review). Inorganic Materials: Applied Research, 2021, 12, 195-203.	0.5	3
140	Effect of Complex Additives Based on Iron, Cobalt, and Manganese Oxides and Sodium Silicate on the Sintering and Properties of Low-Temperature Ceramics 3Y–TZP–Al2O3. Russian Journal of Inorganic Chemistry, 2021, 66, 1223-1228.	1.3	3
141	The Functionalization of Calcium Phosphate Materials of Protein-based Biologically Active Molecules. Biomedical Chemistry Research and Methods, 2019, 2, e00096.	0.4	3
142	Effect of thermal processing on characteristics of nanopowders of hydroxyapatite. Inorganic Materials: Applied Research, 2011, 2, 25-30.	0.5	2
143	Hydrolysis of dicalcium phosphate dihydrate in a sodium acetate solution. Doklady Chemistry, 2012, 447, 303-305.	0.9	2
144	Increase in mechanical properties of porous materials by polymer impregnation. Inorganic Materials: Applied Research, 2013, 4, 7-11.	0.5	2

#	Article	IF	CITATIONS
145	Phosphorylated fabric containing particles of calcium phosphates and chitozane. Inorganic Materials: Applied Research, 2014, 5, 32-34.	0.5	2
146	Deformable bone cements in system calcium phosphates-chitosan. Inorganic Materials: Applied Research, 2014, 5, 347-351.	0.5	2
147	Microstructure formation in porous calcium phosphate-chitosan bone cements. Inorganic Materials, 2015, 51, 396-399.	0.8	2
148	Bone cements in the calcium phosphate–chitosan systems containing magnesium and zinc. Doklady Chemistry, 2016, 468, 199-201.	0.9	2
149	3D printed constructs with antibacterial or antitumor activity for surgical treatment of bone defects in cancer patients. AIP Conference Proceedings, 2017, , .	0.4	2
150	Physicochemical and osteoplastic characteristics of 3D printed bone grafts based on synthetic calcium phosphates and natural polymers. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012047.	0.6	2
151	Synthesis and study of the synthetic hydroxyapatite doped with aluminum. IOP Conference Series: Earth and Environmental Science, 2018, 155, 012017.	0.3	2
152	The Microctructure Formation and the Composite Properties Based on Alginate with Antibacterial Activity. Inorganic Materials: Applied Research, 2018, 9, 644-648.	0.5	2
153	Calcium phosphate ceramic surface coating via precipitation approach. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012101.	0.6	2
154	The Effect of Phosphate Groups on the Structure and Properties of Bone Cements Based on Calcium Sulfate. Doklady Chemistry, 2020, 493, 117-120.	0.9	2
155	Effect of Co2+ on the Phase Formation, Mechanical Properties, and In Vitro Behavior of Ceramics in the ZrO2–Al2O3 System. Doklady Chemistry, 2020, 493, 99-104.	0.9	2
156	Copper and cerium co-substituted hydroxyapatite: powders synthesis and sintering. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012061.	0.6	2
157	Structure and Mechanical Properties of a Three-Dimensional Capillary Porous Titanium Coating. Russian Metallurgy (Metally), 2021, 2021, 25-31.	0.5	2
158	Gene-Activated Hydrogels Based on Sodium Alginate for Reparative Myogenesis of Skeletal Muscle. Inorganic Materials: Applied Research, 2021, 12, 1026-1032.	0.5	2
159	Coatings of Low-Temperature Calcium Phosphates on Hydroxyapatite Ceramic. Inorganic Materials: Applied Research, 2021, 12, 940-945.	0.5	2
160	Cerium-Containing Hydroxyapatites with Luminescent Properties. Russian Journal of Inorganic Chemistry, 2021, 66, 1067-1072.	1.3	2
161	Efficacy of Gen-Activated Osteoplastic Material Based on Octacalcium Phosphate and Plasmid DNA containing vegf Gene for Critical-sized Bone Defects Substitution. N N Priorov Journal of Traumatology and Orthopedics, 2015, , 35-42.	0.4	2
162	Evaluation of the effect of tissue-engineered constructs based on octacalcium phosphate and gingival stromal cells on dental implants osteointegration. Genes and Cells, 2018, 13, 24-30.	0.2	2

#	Article	IF	CITATIONS
163	Physico-chemical and biological properties of dental calcium silicate cements - literature review. Hemijska Industrija, 2019, 73, 281-294.	0.7	2
164	Three-dimensional TCP scaffolds enriched with Erythropoietin for stimulation of vascularization and bone formation. Electronic Journal of General Medicine, 2019, 16, em115.	0.7	2
165	Peculiarities of Solubility and Cytocompatibility In Vitro of Bone Cements on the Basis of Calcium Sulfate Containing Phosphate Ions. Inorganic Materials: Applied Research, 2022, 13, 161-170.	0.5	2
166	Porous apatite biocompatible scaffolds for cell technology for the repair of tissue defects in surgery. Doklady Chemistry, 2005, 401, 55-57.	0.9	1
167	Local Delivery of Antibiotics Using Hydroxyapatite with Bi-modal Pore Size Distribution. Key Engineering Materials, 2006, 309-311, 949-952.	0.4	1
168	Structural changes in carbonated hydroxyapatite at high temperatures as probed by 1H NMR and Raman spectroscopy. Doklady Chemistry, 2007, 413, 64-67.	0.9	1
169	Mineralization of the chitosan-octacalcium phosphate composite material in a simulated human body fluid. Doklady Chemistry, 2014, 459, 215-218.	0.9	1
170	Three-dimensional printing of osteoconductive ceramic matrices for tissue engineering. Inorganic Materials: Applied Research, 2014, 5, 318-322.	0.5	1
171	Chitosan-based films with medicines. Inorganic Materials: Applied Research, 2014, 5, 330-333.	0.5	1
172	Destruction of the chitosan matrix for tissue engineering during Î ³ -irradiation sterilization. Doklady Chemistry, 2014, 454, 46-48.	0.9	1
173	In situ synthesis of calcium phosphates on chitosan macromolecules in the presence of glutamic and aspartic acids. Inorganic Materials, 2014, 50, 703-706.	0.8	1
174	High-Temperature Solid-Phase Interaction of Hydroxyapatite with Mg, Sr, and Zn Nitrates. Doklady Chemistry, 2018, 483, 283-286.	0.9	1
175	Application of atomic absorption spectroscopy method for platinum content determination to study functionalization of bone substitute materials with anticancer drug. Journal of Physics: Conference Series, 2019, 1347, 012086.	0.4	1
176	Functionalization of tissue equivalents based on sodium alginate by human blood plasma. Journal of Physics: Conference Series, 2019, 1347, 012076.	0.4	1
177	Highly Filled Compositions Based on Alginate Gel and Fine Tricalcium Phosphate for 3D Printing of Tissue-Engineered Matrices. Inorganic Materials: Applied Research, 2020, 11, 1137-1143.	0.5	1
178	Biocompatible Biodegradable Composite Materials in the Biopolymer–Calcium Phosphate System for Replacing Osteochondral Defects. Inorganic Materials: Applied Research, 2021, 12, 242-249.	0.5	1
179	10.1007/s11502-008-2002-4. , 2010, , .		1
180	In Vitro Evaluation of the Composite Alginate - Calcium Phosphate Materials for Prototyping Technologies in Bone Defects Substitution. N N Priorov Journal of Traumatology and Orthopedics, 2015, , 28-34.	0.4	1

#	Article	IF	CITATIONS
181	Structure and Phase Composition of Hydroxyapatite Plasma Coating. Inorganic Materials: Applied Research, 2021, 12, 1236-1242.	0.5	1
182	Quantitative texture analysis of a hydroxyapatite coatings plasma-sprayed on titanium substrates at different temperatures. Zavodskaya Laboratoriya Diagnostika Materialov, 2020, 86, 23-31.	0.5	1
183	Influence of Titanium Substrate Temperature on Phase Structure of a Plasma Hydroxyapatite Coating. Inorganic Materials: Applied Research, 2022, 13, 386-392.	0.5	1
184	Structural transformations in the a-tricalcium phosphate powders after mechanical activation and subsequent heat treatment. IOP Conference Series: Materials Science and Engineering, 2016, 130, 012049.	0.6	0
185	Strengthening of deformable bone cements in the calcium phosphates–chitosan system by tricalcium phosphate granules. Inorganic Materials: Applied Research, 2016, 7, 20-23.	0.5	Ο
186	Advanced Microstructural Characterizations of Some Biomaterials and Scaffolds for Regenerative Orthopaedics. Key Engineering Materials, 2017, 745, 3-15.	0.4	0
187	X-ray investigation of the powders of tricalcium phosphate exposed to processing in planetary mill. Inorganic Materials: Applied Research, 2017, 8, 587-593.	0.5	0
188	The shear strength of composite from the titan and hydroxyapatite3D coatings with a new type of porous structure, intend for biological application. , 2017, , .		0
189	Surface Modification of Ceramic Structures for Highly Effective Infiltration of Osteogenic Factors. Journal of Physics: Conference Series, 2018, 1134, 012057.	0.4	0
190	Shear strength of a three-dimensional capillary-porous titanium coating for biomedical applications. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012002.	0.6	0
191	Hydrogels based on polysaccharide-calcium phosphate with antibacterial / antitumor activity for 3D printing. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012044.	0.6	0
192	Three-Dimensional Reconstruction of Erythrocytes Using the Novel Method For Corrective Realignment of the Transmission Electron Microscopy Cross-Section Images. Microscopy and Microanalysis, 2018, 24, 676-683.	0.4	0
193	Computational Methods for the Predictive Design of Bone Tissue Engineering Scaffolds. , 2018, , 107-129.		0
194	The influence of immersion in buffer systems simulating body fluids on properties and morphology of octacalcium phosphate granules. Journal of Physics: Conference Series, 2019, 1347, 012011.	0.4	0
195	Low-temperature bioresorbable composite material magnesium-hydroxyapatit. Journal of Physics: Conference Series, 2019, 1347, 012078.	0.4	0
196	Bone cements of calcium-magnesium phosphate and magnesium oxide. Journal of Physics: Conference Series, 2019, 1347, 012075.	0.4	0
197	The effect of buffer sedimentation on the process of biometric deposition of calcium phosphates. Journal of Physics: Conference Series, 2019, 1347, 012083.	0.4	0
198	Effect of ions concentration in buffer solutions on the nucleation of hydroxyapatite surface on the octacalcium phosphate granules. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012057.	0.6	0

#	Article	IF	CITATIONS
199	Features of solubility and cytocompatibility in vitro of bone cements based on calcium sulfate containing phosphate ions. Materialovedenie, 2021, , 39-48.	0.1	0
200	Developments in the Field of Biocompatible Composite Materials Based on Biopolymers and Calcium Phosphates Adapted to Prototyping Technology. Polymer Science - Series D, 2021, 14, 265-268.	0.6	0
201	Phases formation in cerium-doped hydroxyapatite. Journal of Physics: Conference Series, 2021, 1942, 012036.	0.4	0
202	Structure and phase composition of hydroxyapatite plasma coating. Perspektivnye Materialy, 2021, 4, 26-36.	0.1	0
203	Kinetics ofin VivoBone Deposition by Bone Marrow Stromal Cells into Porous Calcium Phosphate Scaffolds: An X-Ray Computed Microtomography Study. Tissue Engineering, 2006, .	4.6	0
204	From Micro-CT to Multiscale Mechanics of Double-Porous Hydroxyapatite Granules for Regenerative Medicine. , 2012, , .		0
205	In Vivo Study of Tricomponent Resorbable Calcium Phosphate Bone Cement Based on Tricalcium Phosphate. N N Priorov Journal of Traumatology and Orthopedics, 2014, , 72-77.	0.4	0
206	In Vitro Evaluation of the Composite Alginate - Calcium Phosphate Materials for Prototyping Technologies in Bone Defects Substitution. N N Priorov Journal of Traumatology and Orthopedics, 2015, 22, 28-34.	0.4	0
207	Bacteriostatic Characteristics of Bone Substituting Constructors Obtained from Composite Materials Based on Natural Polymers, Calcium Phosphates and Vancomycin. N N Priorov Journal of Traumatology and Orthopedics, 2017, 24, 48-56.	0.4	0
208	Computational Methods for the Predictive Design of Bone Tissue Engineering Scaffolds. , 2018, , 1-23.		0
209	Biological activity comparative evaluation of the gene-activated bone substitutes made of octacalcium phosphate and plasmid DNA carrying VEGF and SDF genes: part 2 - in vivo. Genes and Cells, 2017, 12, 39-46.	0.2	0
210	EVALUATION OF BIOCOMPATIBILITY AND EFFICIENCY OF PLASMID DNA DELIVERY BY GENE- ACTIVATED HYDROGELS IN VITRO. Genes and Cells, 2019, 14, 40-46.	0.2	0
211	High-filled compositions based on alginate gel and fine tricalcium phosphate 3D printing of tissue-engineered matrices. Perspektivnye Materialy, 2020, , 34-43.	0.1	0
212	Calcium phosphate and composite materials functionalization of bioactive agents for its target delivery to the bone. N N Priorov Journal of Traumatology and Orthopedics, 2020, 27, 52-59.	0.4	0
213	Plasma Spraying for Additive Preparation Technology of 3D Bioactive Coatings with a New Type of Porous Ridge/Cavity Structure. SSRN Electronic Journal, 0, , .	0.4	0
214	Bioresorption and biodegradation of the 3D-printed gene-activated bone substitutes based on octacalcium phosphate. Genes and Cells, 2020, 15, 66-70.	0.2	0
215	Copper and ceriumco-substituted hydroxyapatitesnanopowders. Trudy Kolʹskogo NauÄnogo Centra RAN, 2020, 11, 129-134.	0.1	0
216	Comparative Study of Osteoplastic Potentials of Ceramics Based on Tricalcium and Octacalcium Phosphate In Vivo. Inorganic Materials: Applied Research, 2022, 13, 231-239.	0.5	0

#	Article	IF	CITATIONS
217	Composite thin films based on multilayer carbon nanotubes and calcium phosphate with electrical conductive properties for bone tissue engineering. Journal of Physics: Conference Series, 2021, 2091, 012018.	0.4	0
218	Communicate Internationally - With Partners from the New Independent States (NIS). , 2007, , 235-237.		0
219	Formation of a Biocompatible Electrically Conductive Material Based on Multi-Walled Nanotubes and Calcium Phosphate for Bone Tissue Engineering. , 2022, , .		0
220	Structure of Three-Dimensional Capillary Porous Plasma Bronze Coatings. Russian Metallurgy (Metally), 2022, 2022, 528-540.	0.5	0