
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8171154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telomere Length Change in a Multidomain Lifestyle Intervention to Prevent Cognitive Decline: A Randomized Clinical Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 491-498.	3.6	11
2	Protein Interaction Network Biology in Neuroscience. Proteomics, 2021, 21, e1900311.	2.2	13
3	TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proceedings of the United States of America, 2021, 118, .	7.1	72
4	Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tau of tau opathy. Molecular Cell, 2021, 81, 4209-4227.e12.	9.7	84
5	Monomeric Câ€reactive protein via endothelial CD31 for neurovascular inflammation in an ApoE genotypeâ€dependent pattern: A risk factor for Alzheimer's disease?. Aging Cell, 2021, 20, e13501.	6.7	25
6	Single cell transcriptomic profiling of neurodegeneration mediated by tau in a novel 3D neuronâ€astrocyte coculture model. Alzheimer's and Dementia, 2021, 17, e058551.	0.8	2
7	Single cell transcriptomic profiling of tau pathophysiology in a novel 3D neural-glial coculture model Alzheimer's and Dementia, 2021, 17 Suppl 3, e054138.	0.8	0
8	Oligomeric tau disrupts nuclear envelope via binding to lamin proteins and lamin B receptor Alzheimer's and Dementia, 2021, 17 Suppl 3, e054521.	0.8	3
9	A Mutation in <i>Hnrnph1</i> That Decreases Methamphetamine-Induced Reinforcement, Reward, and Dopamine Release and Increases Synaptosomal hnRNP H and Mitochondrial Proteins. Journal of Neuroscience, 2020, 40, 107-130.	3.6	39
10	Tau Oligomers and Fibrils Exhibit Differential Patterns of Seeding and Association With RNA Binding Proteins. Frontiers in Neurology, 2020, 11, 579434.	2.4	21
11	Regulation of ribosomal function by oligomeric tau. Alzheimer's and Dementia, 2020, 16, e039190.	0.8	0
12	BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Systems, 2020, 10, 333-350.e14.	6.2	48
13	5′ UTR variants in the quantitative trait gene <i>Hnrnph1</i> support reduced 5′ UTR usage and hnRNP H protein as a molecular mechanism underlying reduced methamphetamine sensitivity. FASEB Journal, 2020, 34, 9223-9244.	0.5	12
14	Crohn's and Parkinson's Disease-Associated LRRK2 Mutations Alter Type II Interferon Responses in Human CD14+ Blood Monocytes Ex Vivo. Journal of NeuroImmune Pharmacology, 2020, 15, 794-800.	4.1	15
15	The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. Progress in Molecular Biology and Translational Science, 2020, 174, 187-223.	1.7	16
16	Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Frontiers in Neuroscience, 2020, 14, 285.	2.8	24
17	Beneficial association of angiotensin-converting enzyme inhibitors and statins on the occurrence of possible Alzheimer's disease after traumatic brain injury. Alzheimer's Research and Therapy, 2020, 12, 33.	6.2	15
18	Alzheimer's Disease: Many Failed Trials, So Where Do We Go from Here?. Journal of Investigative Medicine, 2020, 68, 1135-1140.	1.6	17

#	Article	IF	CITATIONS
19	Effects of Amylin Against Amyloid-β-Induced Tauopathy and Synapse Loss in Primary Neurons. Journal of Alzheimer's Disease, 2019, 70, 1025-1040.	2.6	7
20	Stress granules and neurodegeneration. Nature Reviews Neuroscience, 2019, 20, 649-666.	10.2	452
21	The Evolution of Phase-Separated TDP-43 in Stress. Neuron, 2019, 102, 265-267.	8.1	16
22	Dysregulation of RNA Splicing in Tauopathies. Cell Reports, 2019, 29, 4377-4388.e4.	6.4	55
23	Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death and Differentiation, 2019, 26, 1411-1427.	11.2	80
24	TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathologica, 2019, 137, 259-277.	7.7	74
25	Heavy Metal Neurotoxicants Induce ALS-Linked TDP-43 Pathology. Toxicological Sciences, 2019, 167, 105-115.	3.1	37
26	The Pathophysiology of Tau and Stress Granules in Disease. Advances in Experimental Medicine and Biology, 2019, 1184, 359-372.	1.6	23
27	Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 2018, 28, 420-435.	7.9	1,439
28	Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nature Neuroscience, 2018, 21, 72-80.	14.8	189
29	Disrupted in Dementia. Biological Psychiatry, 2018, 84, 474-475.	1.3	0
30	RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathologica Communications, 2018, 6, 71.	5.2	108
31	Changes in neuronal immunofluorescence in the C- versus N-terminal domains of hnRNP H following D1 dopamine receptor activation. Neuroscience Letters, 2018, 684, 109-114.	2.1	6
32	Directed evolution of a picomolar-affinity, high-specificity antibody targeting phosphorylated tau. Journal of Biological Chemistry, 2018, 293, 12081-12094.	3.4	16
33	Dioxins and related environmental contaminants increase TDP-43 levels. Molecular Neurodegeneration, 2017, 12, 35.	10.8	32
34	Amylin receptor ligands reduce the pathological cascade of Alzheimer's disease. Neuropharmacology, 2017, 119, 170-181.	4.1	34
35	Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes. Human Molecular Genetics, 2017, 26, 1407-1418.	2.9	78

#	Article	IF	CITATIONS
37	Dendritic TAU-telidge. EBioMedicine, 2017, 20, 3-4.	6.1	0
38	[P3–574]: ASSOCIATIONS OF LEUCOCYTE TELOMERE LENGTH WITH BRAINÂMRIÂAND PIBâ€₽ET MEASURES: THEÂFINGER STUDY. Alzheimer's and Dementia, 2017, 13, P1199.	0.8	0
39	[P4–029]: AMYLIN RECEPTOR LIGANDS REDUCE THE PATHOLOGICAL CASCADE OF ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P1266.	0.8	0
40	[O2–O3–O3]: TAUâ€ i NDUCED NEURODEGENERATION IS MEDIATED BY RNA BINDING PROTEINS. Alzheimer's Dementia, 2017, 13, P555.	and 0.8	0
41	Baseline Telomere Length and Effects of a Multidomain Lifestyle Intervention on Cognition: The FINGER Randomized Controlled Trial. Journal of Alzheimer's Disease, 2017, 59, 1459-1470.	2.6	20
42	Dysregulation of RNA Binding Protein Aggregation in Neurodegenerative Disorders. Frontiers in Molecular Neuroscience, 2017, 10, 89.	2.9	117
43	O4-04-01: Microglial Exosomes Propagate Tau Protein from the Entorhinal Cortex to the Hippocampus: An Early Pathophysiology of Alzheimer's Disease. , 2016, 12, P339-P340.		1
44	Simvastatin inhibits protein isoprenylation in the brain. Neuroscience, 2016, 329, 264-274.	2.3	20
45	LRRK2 and RAB7L1 coordinately regulate axonal morphology and lysosome integrity in diverse cellular contexts. Scientific Reports, 2016, 6, 29945.	3.3	111
46	P4â€081: Environmental Stress and Glucocorticoids Trigger an HDAC6â€Dependent Induction of Stress Granules and TAU Aggregation: Implications For Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P1044.	0.8	0
47	Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. Cell Reports, 2016, 15, 1455-1466.	6.4	260
48	Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis. Journal of Neuroscience, 2016, 36, 1001-1007.	3.6	149
49	Impairment of PARK14-dependent Ca2+ signalling is a novel determinant of Parkinson's disease. Nature Communications, 2016, 7, 10332.	12.8	82
50	Syk and Yea Shall Find. EBioMedicine, 2015, 2, 1590-1591.	6.1	0
51	Mutations in LRRK2 potentiate age-related impairment of autophagic flux. Molecular Neurodegeneration, 2015, 10, 26.	10.8	54
52	O4-12-05: Interaction between microtubule-associated protein tau and RNA binding proteins stimulates tau misfolding and stress granule formation. , 2015, 11, P300-P301.		0
53	Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nature Neuroscience, 2015, 18, 1584-1593.	14.8	1,142
54	RNA Binding Proteins and the Genesis of Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2015, 822, 11-15.	1.6	21

#	Article	IF	CITATIONS
55	Interaction of LRRK2 with kinase and GTPase signaling cascades. Frontiers in Molecular Neuroscience, 2014, 7, 64.	2.9	24
56	A High-Content Screen Identifies Novel Compounds That Inhibit Stress-Induced TDP-43 Cellular Aggregation and Associated Cytotoxicity. Journal of Biomolecular Screening, 2014, 19, 44-56.	2.6	56
57	Regulation of Autophagy by LRRK2 in <i>Caenorhabditis elegans</i> . Neurodegenerative Diseases, 2014, 13, 110-113.	1.4	22
58	ALS-Linked Mutations Enlarge TDP-43-Enriched Neuronal RNA Granules in the Dendritic Arbor. Journal of Neuroscience, 2014, 34, 4167-4174.	3.6	101
59	A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Human Molecular Genetics, 2014, 23, 4887-4905.	2.9	45
60	Pathological stress granules in Alzheimer's disease. Brain Research, 2014, 1584, 52-58.	2.2	99
61	Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discovery Medicine, 2014, 17, 47-52.	0.5	54
62	Role of Stress Granules and RNA-Binding Proteins in Neurodegeneration: A Mini-Review. Gerontology, 2013, 59, 524-533.	2.8	553
63	Induced Pluripotent Stem Cell Modeling of Multisystemic, Hereditary Transthyretin Amyloidosis. Stem Cell Reports, 2013, 1, 451-463.	4.8	42
64	Neuronal-Specific Overexpression of a Mutant Valosin-Containing Protein Associated with IBMPFD Promotes Aberrant Ubiquitin and TDP-43 Accumulation and Cognitive Dysfunction in Transgenic Mice. American Journal of Pathology, 2013, 183, 504-515.	3.8	35
65	The Scientist's Pledge. Academic Medicine, 2013, 88, 743.	1.6	2
66	Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies. Journal of Neuroscience, 2012, 32, 8270-8283.	3.6	186
67	Regulation of Physiologic Actions of LRRK2: Focus on Autophagy. Neurodegenerative Diseases, 2012, 10, 238-241.	1.4	38
68	TDP-43: A new player on the AD field?. Experimental Neurology, 2012, 237, 90-95.	4.1	25
69	The heat shock transcription factor Hsf1 is downregulated in DNA damage–associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell, 2012, 11, 617-627.	6.7	66
70	Redox Proteomics Analyses of the Influence of Co-Expression of Wild-Type or Mutated LRRK2 and Tau on C. elegans Protein Expression and Oxidative Modification: Relevance to Parkinson Disease. Antioxidants and Redox Signaling, 2012, 17, 1490-1506.	5.4	43
71	Regulated protein aggregation: stress granules and neurodegeneration. Molecular Neurodegeneration, 2012, 7, 56.	10.8	271
72	Statins and therapy of Alzheimer's disease: questions of efficacy versus trial design. Alzheimer's Research and Therapy, 2011, 4, 3.	6.2	9

#	Article	IF	CITATIONS
73	Local RNA Translation at the Synapse and in Disease: Figure 1 Journal of Neuroscience, 2011, 31, 16086-16093.	3.6	264
74	Watching Worms Whither. Progress in Molecular Biology and Translational Science, 2011, 100, 499-514.	1.7	42
75	Rac1 Protein Rescues Neurite Retraction Caused by G2019S Leucine-rich Repeat Kinase 2 (LRRK2). Journal of Biological Chemistry, 2011, 286, 16140-16149.	3.4	104
76	Leucine-rich repeat kinase 2 induces α-synuclein expression via the extracellular signal-regulated kinase pathway. Cellular Signalling, 2010, 22, 821-827.	3.6	76
77	MKK6 binds and regulates expression of Parkinson's diseaseâ€related protein LRRK2. Journal of Neurochemistry, 2010, 112, 1593-1604.	3.9	94
78	The Parkinson's Disease Associated LRRK2 Exhibits Weaker In Vitro Phosphorylation of 4E-BP Compared to Autophosphorylation. PLoS ONE, 2010, 5, e8730.	2.5	86
79	Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ: British Medical Journal, 2010, 340, b5465-b5465.	2.3	393
80	Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue. PLoS ONE, 2010, 5, e13250.	2.5	509
81	Midlife Serum Cholesterol and Increased Risk of Alzheimer's and Vascular Dementia Three Decades Later. Dementia and Geriatric Cognitive Disorders, 2009, 28, 75-80.	1.5	422
82	LRRK2 Modulates Vulnerability to Mitochondrial Dysfunction in Caenorhabditis elegans. Journal of Neuroscience, 2009, 29, 9210-9218.	3.6	220
83	Leptin: A Novel Therapeutic Strategy for Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 731-740.	2.6	114
84	Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein. Molecular Neurodegeneration, 2008, 3, 5.	10.8	30
85	Investigating Convergent Actions of Genes Linked to Familial Parkinson's Disease. Neurodegenerative Diseases, 2008, 5, 182-185.	1.4	37
86	The unconscious in economic decision-making: Convergent voices. Journal of Socio-Economics, 2007, 36, 856-864.	1.0	9
87	Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease. BMC Medicine, 2007, 5, 20.	5.5	334
88	Cholesterol and Alzheimer's Disease. , 2007, , 142-158.		1
89	Interpreting Clinical Studies of Putative Therapeutics for Alzheimer's Disease: The Case of Statins and NSAIDs. , 2007, , 296-308.		0
90	The players on the Î ³ -secretase team. Nature Medicine, 2006, 12, 766-767.	30.7	6

#	Article	IF	CITATIONS
91	Interventions for heart disease and their effects on Alzheimer's disease. Neurological Research, 2006, 28, 630-636.	1.3	33
92	Assessment of the emergence of Alzheimer's disease following coronary artery bypass graft surgery or percutaneous transluminal coronary angioplasty1. Journal of Alzheimer's Disease, 2005, 7, 319-324.	2.6	171
93	β-Synuclein Reduces Proteasomal Inhibition by α-Synuclein but Not γ-Synuclein. Journal of Biological Chemistry, 2005, 280, 7562-7569.	3.4	49
94	Similar Patterns of Mitochondrial Vulnerability and Rescue Induced by Genetic Modification of α-Synuclein, Parkin, and DJ-1 in Caenorhabditis elegans. Journal of Biological Chemistry, 2005, 280, 42655-42668.	3.4	223
95	Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice—a model of familial Parkinson's disease. Neurobiology of Disease, 2005, 18, 492-498.	4.4	157
96	Differential Expression of Cholesterol Hydroxylases in Alzheimer's Disease. Journal of Biological Chemistry, 2004, 279, 34674-34681.	3.4	238
97	Pathological Proteins in Parkinson's Disease: Focus on the Proteasome. Journal of Molecular Neuroscience, 2004, 24, 425-442.	2.3	50
98	CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Human Molecular Genetics, 2004, 13, 703-714.	2.9	613
99	Cholesterol and the Biology of Alzheimer's Disease. Neuron, 2004, 41, 7-10.	8.1	263
100	Cholesterol, statins and dementia. Current Opinion in Lipidology, 2004, 15, 667-672.	2.7	76
101	The Cellular Biochemistry of Cholesterol and Statins: Insights into the Pathophysiology and Therapy of Alzheimer's Disease. CNS Neuroscience & Therapeutics, 2004, 10, 127-146.	4.0	48
102	Oxidative damage in the olfactory system in Alzheimer's disease. Acta Neuropathologica, 2003, 106, 552-556.	7.7	67
103	Cyp46 (24S-Cholesterol Hydroxylase). Archives of Neurology, 2003, 60, 16.	4.5	40
104	Aggregated and Monomeric α-Synuclein Bind to the S6′ Proteasomal Protein and Inhibit Proteasomal Function. Journal of Biological Chemistry, 2003, 278, 11753-11759.	3.4	364
105	Magnesium Inhibits Spontaneous and Iron-induced Aggregation of α-Synuclein. Journal of Biological Chemistry, 2002, 277, 16116-16123.	3.4	184
106	α-Synuclein Interacts with Phospholipase D Isozymes and Inhibits Pervanadate-induced Phospholipase D Activation in Human Embryonic Kidney-293 Cells. Journal of Biological Chemistry, 2002, 277, 12334-12342.	3.4	118
107	Parkin Protects against the Toxicity Associated with Mutant α-Synuclein. Neuron, 2002, 36, 1007-1019.	8.1	542
108	Peering into proteolysis with presenilins. Journal of Alzheimer's Disease, 2001, 3, 191-193.	2.6	0

#	Article	IF	CITATIONS
109	Co-association of parkin and \hat{l} ±-synuclein. NeuroReport, 2001, 12, 2839-2843.	1.2	71
110	The A53T α-Synuclein Mutation Increases Iron-Dependent Aggregation and Toxicity. Journal of Neuroscience, 2000, 20, 6048-6054.	3.6	504
111	Parkin is metabolized by the ubiquitin/proteosome system. NeuroReport, 2000, 11, 2635-2638.	1.2	52
112	Regulation of Amyloid Precursor Protein Processing by Presenilin 1 (PS1) and PS2 in PS1 Knockout Cells. Journal of Biological Chemistry, 2000, 275, 215-222.	3.4	41
113	Mechanisms of Neurodegenerative Disorders. Archives of Neurology, 2000, 57, 801.	4.5	41
114	Decreased Prevalence of Alzheimer Disease Associated With 3-Hydroxy-3-Methyglutaryl Coenzyme A Reductase Inhibitors. Archives of Neurology, 2000, 57, 1439.	4.5	1,369
115	Mechanisms of Neurodegenerative Disorders. Archives of Neurology, 2000, 57, 793.	4.5	76
116	α-Synuclein Shares Physical and Functional Homology with 14-3-3 Proteins. Journal of Neuroscience, 1999, 19, 5782-5791.	3.6	513
117	FMR1 gene expression in olfactory neuroblasts from two males with fragile X syndrome. , 1999, 82, 25-30.		30
118	Longitudinal stability of CSF tau levels in Alzheimer patients. Biological Psychiatry, 1999, 46, 750-755.	1.3	103
119	Direct association of presenilin-1 with \hat{I}^2 -catenin. FEBS Letters, 1998, 433, 73-77.	2.8	151
120	Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9637-9641.	7.1	396
121	Human Olfactory Neuroepithelial Cells: Tyrosine Phosphorylation and Process Extension Are Increased by the Combination of IL-11², IL-6, NGF, and bFGF. Experimental Neurology, 1996, 142, 179-194.	4.1	35
122	Requirement of the Familial Alzheimer's Disease Gene PS2 for Apoptosis. Journal of Biological Chemistry, 1996, 271, 31025-31028.	3.4	127
123	Differential Regulation of APP Secretion by Apolipoprotein E3 and E4. , 1996, , 97-102.		1
124	Protein alterations in olfactory neuroblasts from Alzheimer donors. Neurobiology of Aging, 1994, 15, 675-680.	3.1	10
125	Olfactory neuroblasts from Alzheimer donors: Studies on APP processing and cell regulation. Biological Psychiatry, 1993, 34, 824-838.	1.3	51
126	Continuous culture of neuronal cells from adult human olfactory epithelium. Journal of Molecular Neuroscience, 1992, 3, 137-146.	2.3	69

#	Article	IF	CITATIONS
127	Alzheimer-related neuronal protein A68: Specificity and distribution. Annals of Neurology, 1987, 22, 521-526.	5.3	178
128	Molecular Mechanisms of Neurodegenerative Disorders. , 0, , 377-409.		1
129	Pharmacoepidemiological Studies Using the Veterans Affairs Decision Support System. , 0, , .		0
130	Macromolecular Connectivity Landscape of Mammalian Brain. SSRN Electronic Journal, 0, , .	0.4	1
131	A Complex Containing HNRNPA2B1 and N ⁶ -Methyladenosine Modified Transcripts Mediates Actions of Toxic Tau Oligomers. SSRN Electronic Journal, 0, , .	0.4	0
132	PRESENILINS AND THEIR ROLE IN APOPTOSIS. , 0, , .		0