Valeria Chiono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac Tissue-like 3D Microenvironment Enhances Route towards Human Fibroblast Direct Reprogramming into Induced Cardiomyocytes by microRNAs. Cells, 2022, 11, 800.	1.8	11
2	Wound dressing products: A translational investigation from the bench to the market. Engineered Regeneration, 2022, 3, 182-200.	3.0	34
3	Editorial: Advanced Therapies for Cardiac Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644076.	2.0	1
4	Abstract LT018: The perivascular niche protects ALK+ lymphoma cells from ALK inhibition through the CCL19/21-CCR7 axis. , 2021, , .		0
5	Mussel-inspired antimicrobial coating on PTFE barrier membranes for guided tissue regeneration. Biomedical Materials (Bristol), 2021, 16, 035035.	1.7	8
6	Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds. Bioactive Materials, 2021, 6, 3013-3024.	8.6	33
7	Fundamental <i>in vitro</i> 3D human skin equivalent tool development for assessing biological safety and biocompatibility – towards alternative for animal experiments. 40pen, 2021, 4, 1.	0.1	6
8	3D Self-Organized Human Blood–Brain Barrier in a Microfluidic Chip. Methods in Molecular Biology, 2021, 2258, 205-219.	0.4	9
9	Bioengineering Methods in MicroRNA-Mediated Direct Reprogramming of Fibroblasts Into Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2021, 8, 750438.	1.1	8
10	Direct-Write Deposition of Thermogels. Methods in Molecular Biology, 2021, 2147, 137-142.	0.4	0
11	In situ Forming Hyperbranched PEG—Thiolated Hyaluronic Acid Hydrogels With Honey-Mimetic Antibacterial Properties. Frontiers in Bioengineering and Biotechnology, 2021, 9, 742135.	2.0	7
12	Custom-design of intrinsically antimicrobial polyurethane hydrogels as multifunctional injectable delivery systems for mini-invasive wound treatment. Engineered Regeneration, 2021, 2, 263-278.	3.0	7
13	Polyurethane-based thiomers: A new multifunctional copolymer platform for biomedical applications. Reactive and Functional Polymers, 2020, 146, 104413.	2.0	16
14	PLGA Membranes Functionalized with Gelatin through Biomimetic Mussel-Inspired Strategy. Nanomaterials, 2020, 10, 2184.	1.9	12
15	Tumor-Derived cGAMP Regulates Activation of the Vasculature. Frontiers in Immunology, 2020, 11, 2090.	2.2	37
16	MicroRNA-Mediated Direct Reprogramming of Human Adult Fibroblasts Toward Cardiac Phenotype. Frontiers in Bioengineering and Biotechnology, 2020, 8, 529.	2.0	36
17	In vitro models of human cardiac fibrotic tissue on â€~bioartificial' scaffolds. Biomedical Science and Engineering, 2020, , .	0.0	0
18	Approaching 3R teaching in biomedical engineering. Biomedical Science and Engineering, 2020, 3, .	0.0	1

#	Article	IF	CITATIONS
19	Cell–biomaterial interactions: the role of ligand functionalization. , 2020, , 139-173.		1
20	In vitro microfluidic modelling of the human blood-brain-barrier microvasculature and testing of nanocarrier transport. Biomedical Science and Engineering, 2020, 3, .	0.0	0
21	Modeling Nanocarrier Transport across a 3D In Vitro Human Bloodâ€Brain–Barrier Microvasculature. Advanced Healthcare Materials, 2020, 9, e1901486.	3.9	57
22	Bloodâ€Brain–Barrier Microvasculatures: Modeling Nanocarrier Transport across a 3D In Vitro Human Bloodâ€Brain–Barrier Microvasculature (Adv. Healthcare Mater. 7/2020). Advanced Healthcare Materials, 2020, 9, 2070021.	3.9	2
23	iPS, organoids and 3D models as advanced tools for in vitro toxicology. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 136-140.	0.9	10
24	2nd Centro3R Annual Meeting: 3Rs in Italian universities. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 493-495.	0.9	2
25	Using Poloxamer® 407 as Building Block of Amphiphilic Poly(ether urethane)s: Effect of its Molecular Weight Distribution on Thermo-Sensitive Hydrogel Performances in the Perspective of Their Biomedical Application. Frontiers in Materials, 2020, 7, .	1.2	9
26	MicroRNA delivery through nanoparticles. Journal of Controlled Release, 2019, 313, 80-95.	4.8	235
27	Drug-Free Antibacterial Technology for Medical Applications - First Cambridge International Conference - December 14th, 2018 - Cambridge, UK. Biomedical Science and Engineering, 2019, 3, .	0.0	Ο
28	Tailored functionalization of poly(L-lactic acid) substrates at the nanoscale to enhance cell response. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 526-546.	1.9	8
29	Plasma Treatment of Polymer Powder as an Effective Tool to Functionalize Polymers: Case Study Application on an Amphiphilic Polyurethane. Polymers, 2019, 11, 2109.	2.0	23
30	Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms. Molecules, 2019, 24, 3843.	1.7	36
31	Current Limitations in the Treatment of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Future Perspective of Polymeric Carriers. Current Medicinal Chemistry, 2019, 25, 5755-5771.	1.2	31
32	Abstract 958: Tumor-vascular interactions promote STING-driven inflammation in the tumor microenvironment. Cancer Research, 2019, 79, 958-958.	0.4	1
33	Abstract 47: Analyzing immune cell infiltration of cancer spheroids in a 3D cell culture platform. , 2019, , .		0
34	Abstract 958: Tumor-vascular interactions promote STING-driven inflammation in the tumor microenvironment. , 2019, , .		0
35	Scaffold functionalization to support a tissue biocompatibility. , 2018, , 255-277.		4
36	Silk fibres grafted with 2-hydroxyethyl methacrylate (HEMA) and 4-hydroxybutyl acrylate (HBA) for biomedical applications. International Journal of Biological Macromolecules, 2018, 107, 537-548.	3.6	12

#	Article	IF	CITATIONS
37	Integration of Biomechanical and Biological Characterization in the Development of Porous Poly(caprolactone)-Based Membranes for Abdominal Wall Hernia Treatment. International Journal of Polymer Science, 2018, 2018, 1-15.	1.2	3
38	Drug-free antibacterial polymers for biomedical applications. Biomedical Science and Engineering, 2018, 2, .	0.0	5
39	3D microfluidic <i>ex vivo</i> culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab on A Chip, 2018, 18, 3129-3143.	3.1	185
40	<i>In vitro</i> models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics, 2018, 12, 042213.	1.2	61
41	Validation of in vitro assays in three-dimensional human dermal constructs. International Journal of Artificial Organs, 2018, 41, 779-788.	0.7	18
42	Influence of Drug-Carrier Polymers on Alpha-Synucleinopathies: A Neglected Aspect in New Therapies Development. BioMed Research International, 2018, 2018, 1-5.	0.9	3
43	Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells. PLoS ONE, 2018, 13, e0199896.	1.1	38
44	3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials, 2018, 180, 117-129.	5.7	499
45	Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes. Cells, 2018, 7, 114.	1.8	24
46	Intermolecular interactions between B. mori silk fibroin and poly(l-lactic acid) in electrospun composite nanofibrous scaffolds. Materials Science and Engineering C, 2017, 70, 777-787.	3.8	17
47	Synthetic biodegradable medical polyurethanes. , 2017, , 189-216.		7
48	Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 197-208.	1.3	44
49	Synthetic Biomaterial for Regenerative Medicine Applications. , 2017, , 901-921.		11
50	Biomedical Science and Engineering: a new multidisciplinary journal dealing with modern regenerative medicine strategies. Biomedical Science and Engineering, 2016, 1, .	0.0	0
51	Layer-by-layer coating of stainless steel plates mediated by surface priming treatment to improve antithrombogenic properties. Biomedical Science and Engineering, 2016, 1, .	0.0	1
52	Novel polyurethaneâ€based thermosensitive hydrogels as drug release and tissue engineering platforms: design and <i>in vitro</i> characterization. Polymer International, 2016, 65, 756-769.	1.6	43
53	Poly(DL-lactide-co-ε-caprolactone) and poly(DL-lactide-co-glycolide) blends for biomedical application: Physical properties, cell compatibility, and in vitro degradation behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 741-750.	1.8	8
54	Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications. Procedia CIRP, 2016, 49, 125-132.	1.0	179

#	Article	IF	CITATIONS
55	Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek, 2016, 109, 1375-1388.	0.7	38
56	PolyDOPA Musselâ€Inspired Coating as a Means for Hydroxyapatite Entrapment on Polytetrafluoroethylene Surface for Application in Periodontal Diseases. Macromolecular Bioscience, 2016, 16, 288-298.	2.1	11
57	Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application. Materials Science and Engineering C, 2016, 59, 249-257.	3.8	86
58	Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology, 2015, 26, 422001.	1.3	109
59	Poly(Lactic Acid)-Based Blends With Tailored Physicochemical Properties for Tissue Engineering Applications: A Case Study. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 90-98.	1.8	22
60	Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Progress in Neurobiology, 2015, 131, 87-104.	2.8	237
61	A bio-hybrid mechanotransduction system based on ciliate cells. Microelectronic Engineering, 2015, 144, 51-56.	1.1	5
62	Chitosan membranes for tissue engineering: comparison of different crosslinkers. Biomedical Materials (Bristol), 2015, 10, 065002.	1.7	26
63	Thermosensitive block copolymer hydrogels based on poly(É›â€caprolactone) and polyethylene glycol for biomedical applications: State of the art and future perspectives. Journal of Biomedical Materials Research - Part A, 2015, 103, 1276-1290.	2.1	67
64	An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. International Journal of Molecular Sciences, 2014, 15, 3640-3659.	1.8	1,158
65	Bioartificial Biomaterials for Regenerative Medicine Applications. , 2014, , 113-136.		1
66	Biomimetic polyurethanes in nano and regenerative medicine. Journal of Materials Chemistry B, 2014, 2, 5128-5144.	2.9	81
67	Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus, 2014, 4, 20130045.	1.5	95
68	Biological evaluation of materials for cardiovascular application: The role of the shortâ€ŧerm inflammatory response in endothelial regeneration. Journal of Biomedical Materials Research - Part A, 2013, 101, 3131-3140.	2.1	4
69	Surface modification of poly(dimethylsiloxane) by two-step plasma treatment for further grafting with chitosan–Rose Bengal photosensitizer. Surface and Coatings Technology, 2013, 223, 92-97.	2.2	40
70	Crosslinked gelatin nanofibres: Preparation, characterisation and in vitro studies using glial-like cells. Materials Science and Engineering C, 2013, 33, 2723-2735.	3.8	67
71	Silk Fibroin/ <scp>G</scp> elatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromolecular Bioscience, 2013, 13, 1492-1510.	2.1	58

Biomaterials of Natural Origin in Regenerative Medicine. , 2013, , 271-308.

#	Article	IF	CITATIONS
73	Biomimetic soluble collagen purified from bones. Biotechnology Journal, 2012, 7, 1386-1394.	1.8	12
74	Collagen for bone tissue regeneration. Acta Biomaterialia, 2012, 8, 3191-3200.	4.1	686
75	Bioresorbable glass effect on the physico-chemical properties of bilayered scaffolds for osteochondral regeneration. Materials Letters, 2012, 89, 74-76.	1.3	18
76	Bioactive glass/polymer composite scaffolds mimicking bone tissue. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2654-2667.	2.1	115
77	Layer-by-layer coating of photoactive polymers for biomedical applications. Surface and Coatings Technology, 2012, 206, 2446-2453.	2.2	29
78	Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. International Journal of Biological Macromolecules, 2011, 49, 700-706.	3.6	105
79	Incorporation of PLGA nanoparticles into porous chitosan–gelatin scaffolds: Influence on the physical properties and cell behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1318-1327.	1.5	67
80	Crossâ€linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes. Biotechnology Journal, 2011, 6, 1208-1218.	1.8	31
81	Polymeric membranes for guided bone regeneration. Biotechnology Journal, 2011, 6, 1187-1197.	1.8	244
82	Poly(ester urethane) Guides for Peripheral Nerve Regeneration. Macromolecular Bioscience, 2011, 11, 245-256.	2.1	28
83	Porous Poly(ε aprolactone) Nerve Guide Filled with Porous Gelatin Matrix for Nerve Tissue Engineering. Advanced Engineering Materials, 2011, 13, B151.	1.6	31
84	Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications. Nanoscience and Technology, 2011, , 645-689.	1.5	2
85	Enzymatically crosslinked porous composite matrices for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2010, 92A, 137-151.	2.1	63
86	Molecularly imprinted submicronspheres for applications in a novel model biosensor-film. Sensors and Actuators B: Chemical, 2010, 150, 394-401.	4.0	34
87	Porous Chitsan-Gelatin Scaffolds Embedded with PLGA Nanoparticles for Bone Repair. Nature Precedings, 2010, , .	0.1	0
88	Composite Films of Gelatin and Hydroxyapatite/Bioactive Glass for Tissue-Engineering Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1207-1226.	1.9	41
89	Biomimetic Materials for Medical Application Through Enzymatic Modification. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 181-205.	0.6	2
90	Photoactive Chitosan Switching on Bone-Like Apatite Deposition. Biomacromolecules, 2010, 11, 309-315.	2.6	35

#	Article	IF	CITATIONS
91	Melt-extruded guides for peripheral nerve regeneration. Part I: Poly(ε-caprolactone). Biomedical Microdevices, 2009, 11, 1037-1050.	1.4	34
92	Characterisation of blends between poly(Îμ-caprolactone) and polysaccharides for tissue engineering applications. Materials Science and Engineering C, 2009, 29, 2174-2187.	3.8	38
93	Chapter 9 Artificial Scaffolds for Peripheral Nerve Reconstruction. International Review of Neurobiology, 2009, 87, 173-198.	0.9	72
94	Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Journal of Materials Science: Materials in Medicine, 2008, 19, 889-898.	1.7	229
95	Chitosan/gelatin blends for biomedical applications. Journal of Biomedical Materials Research - Part A, 2008, 86A, 311-322.	2.1	68
96	Poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate)/poly(ϵâ€caprolactone) blends for tissue engineering applications in the form of hollow fibers. Journal of Biomedical Materials Research - Part A, 2008, 85A, 938-953.	2.1	35
97	Enzymaticallyâ€Modified Meltâ€Extruded Guides for Peripheral Nerve Repair. Engineering in Life Sciences, 2008, 8, 226-237.	2.0	31
98	Materials for Peripheral Nerve Regeneration. Macromolecular Bioscience, 2006, 6, 13-26.	2.1	245
99	Blends of Poly-(ε-caprolactone) and Polysaccharides in Tissue Engineering Applications. Biomacromolecules, 2005, 6, 1961-1976.	2.6	304
100	Innovative tissue engineering structures through advanced manufacturing technologies. Journal of Materials Science: Materials in Medicine, 2004, 15, 305-310.	1.7	27
101	Blends of propylene-ethylene and propylene-1-butene random copolymers: I. Morphology and structure. Polymer, 2004, 45, 7549-7561.	1.8	17
102	Reactive compatibilizer precursors for LDPE/PA6 blends. III: ethylene–glycidylmethacrylate copolymer. Polymer, 2003, 44, 2423-2432.	1.8	60
103	Reactive compatibilizer precursors for LDPE/PA6 blends, 1. Macromolecular Chemistry and Physics, 2002, 203, 1512-1525.	1.1	65
104	Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	14