Yadong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A tough biodegradable elastomer. Nature Biotechnology, 2002, 20, 602-606.	17.5	1,136
2	Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 2005, 26, 5454-5464.	11.4	392
3	Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nature Medicine, 2012, 18, 1148-1153.	30.7	379
4	<i>In vivo</i> degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research Part B, 2003, 66A, 192-197.	3.1	343
5	Endothelialized Microvasculature Based on a Biodegradable Elastomer. Tissue Engineering, 2005, 11, 302-309.	4.6	314
6	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, 12, 2077-2091.	4.6	296
7	Three-Dimensional Microfluidic Tissue-Engineering Scaffolds Using a Flexible Biodegradable Polymer. Advanced Materials, 2006, 18, 165-169.	21.0	272
8	Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 2008, 3, 719-738.	12.0	249
9	Zinc-Based Biomaterials for Regeneration and Therapy. Trends in Biotechnology, 2019, 37, 428-441.	9.3	243
10	Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering. Tissue Engineering, 2006, 12, 917-925.	4.6	193
11	Preâ€treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. Journal of Biomedical Materials Research - Part A, 2008, 86A, 713-724.	4.0	166
12	Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nature Communications, 2020, 11, 1107.	12.8	162
13	Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13444-13449.	7.1	150
14	Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. Journal of Controlled Release, 2013, 166, 124-129.	9.9	136
15	Substantial expression of mature elastin in arterial constructs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2705-2710.	7.1	135
16	Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab on A Chip, 2011, 11, 1550.	6.0	127
17	Therapeutic angiogenesis: controlled delivery of angiogenic factors. Therapeutic Delivery, 2012, 3, 693-714.	2.2	121
18	Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomaterialia, 2015, 18, 30-39.	8.3	118

#	Article	IF	CITATIONS
19	Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230, 119641.	11.4	113
20	A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials, 2010, 31, 3129-3138.	11.4	112
21	A [polycation:heparin] complex releases growth factors with enhanced bioactivity. Journal of Controlled Release, 2011, 150, 157-163.	9.9	112
22	Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. ACS Applied Materials & Interfaces, 2019, 11, 6809-6819.	8.0	111
23	Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. Journal of Controlled Release, 2015, 207, 7-17.	9.9	108
24	Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Science Advances, 2016, 2, e1600844.	10.3	106
25	Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Biomaterials, 2010, 31, 1626-1635.	11.4	102
26	Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing. Biomacromolecules, 2016, 17, 2168-2177.	5.4	99
27	Coacervate delivery systems for proteins and small molecule drugs. Expert Opinion on Drug Delivery, 2014, 11, 1829-1832.	5.0	97
28	Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials, 2014, 35, 165-173.	11.4	94
29	Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials, 2015, 72, 138-151.	11.4	91
30	Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. Journal of Materials Chemistry B, 2017, 5, 887-906.	5.8	90
31	Polycations and their biomedical applications. Progress in Polymer Science, 2016, 60, 18-50.	24.7	88
32	Dual delivery of growth factors with coacervate-coated poly(lactic-co-glycolic acid) nanofiber improves neovascularization inÂa mouse skin flap model. Biomaterials, 2017, 124, 65-77.	11.4	87
33	Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 1-14.	2.7	86
34	A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials, 2011, 32, 777-786.	11.4	85
35	Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1070-1075.	4.0	80
36	Biocompatible Reverse Thermal Gel Sustains the Release of Intravitreal Bevacizumab In Vivo. , 2014, 55,		77

³⁶ 469.

#	Article	IF	CITATIONS
37	Human progenitor cell recruitment via SDF-1α coacervate-laden PGS vascular grafts. Biomaterials, 2013, 34, 9877-9885.	11.4	73
38	Protein Precoating of Elastomeric Tissue-Engineering Scaffolds Increased Cellularity, Enhanced Extracellular Matrix Protein Production, and Differentially Regulated the Phenotypes of Circulating Endothelial Progenitor Cells. Circulation, 2007, 116, 155-63.	1.6	71
39	Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in Mice. Annals of Biomedical Engineering, 2016, 44, 2402-2416.	2.5	71
40	Poly(sebacoyl diglyceride) Cross-Linked by Dynamic Hydrogen Bonds: A Self-Healing and Functionalizable Thermoplastic Bioelastomer. ACS Applied Materials & Interfaces, 2016, 8, 20591-20599.	8.0	70
41	Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials, 2018, 173, 71-86.	11.4	69
42	Coâ€expression of elastin and collagen leads to highly compliant engineered blood vessels. Journal of Biomedical Materials Research - Part A, 2008, 85A, 1120-1128.	4.0	67
43	The effect of a heparin-based coacervate of fibroblast growth factor-2 on scarring in the infarcted myocardium. Biomaterials, 2013, 34, 1747-1756.	11.4	64
44	Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials, 2016, 82, 94-112.	11.4	64
45	Scaffold stiffness affects the contractile function of threeâ€dimensional engineered cardiac constructs. Biotechnology Progress, 2010, 26, 1382-1390.	2.6	62
46	Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. Journal of Controlled Release, 2020, 327, 284-295.	9.9	59
47	Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration. Biomaterials, 2015, 66, 67-82.	11.4	56
48	Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration. Acta Biomaterialia, 2019, 90, 179-191.	8.3	56
49	Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction. Acta Biomaterialia, 2019, 87, 140-151.	8.3	53
50	Biomimetic micropatterned multiâ€channel nerve guides by templated electrospinning. Biotechnology and Bioengineering, 2012, 109, 1571-1582.	3.3	52
51	Dual Delivery of Vascular Endothelial Growth Factor and Hepatocyte Growth Factor Coacervate Displays Strong Angiogenic Effects. Macromolecular Bioscience, 2014, 14, 679-686.	4.1	52
52	The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials, 2014, 35, 1924-1931.	11.4	52
53	Poly (Clycerol Sebacate): A Novel Scaffold Material for Temporomandibular Joint Disc Engineering. Tissue Engineering - Part A, 2013, 19, 729-737.	3.1	51
54	Incorporation of parallel electrospun fibers for improved topographical guidance in 3D nerve guides. Biofabrication, 2013, 5, 035015.	7.1	50

#	Article	IF	CITATIONS
55	Designing Better Cardiovascular Stent Materials: A Learning Curve. Advanced Functional Materials, 2021, 31, .	14.9	50
56	Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta Biomaterialia, 2010, 6, 2091-2096.	8.3	48
57	Drug Delivery Systems for Wound Healing. Current Pharmaceutical Biotechnology, 2015, 16, 621-629.	1.6	46
58	Sustained Release of Bone Morphogenetic Protein 2 via Coacervate Improves the Osteogenic Potential of Muscle-Derived Stem Cells. Stem Cells Translational Medicine, 2013, 2, 667-677.	3.3	45
59	Control Growth Factor Release Using a Self-Assembled [polycationâ^¶heparin] Complex. PLoS ONE, 2010, 5, e11017.	2.5	43
60	Materials for central nervous system regeneration: bioactive cues. Journal of Materials Chemistry, 2011, 21, 7033.	6.7	42
61	Design, synthesis, and biocompatibility of an arginineâ€based polyester. Biotechnology Progress, 2012, 28, 257-264.	2.6	42
62	Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging. Biomaterials, 2013, 34, 2701-2709.	11.4	42
63	Antiviral and Antibacterial Polyurethanes of Various Modalities. Applied Biochemistry and Biotechnology, 2013, 169, 1134-1146.	2.9	42
64	Seamless tubular poly(glycerol sebacate) scaffolds: Highâ€yield fabrication and potential applications. Journal of Biomedical Materials Research - Part A, 2008, 86A, 354-363.	4.0	41
65	A Versatile Synthetic Platform for a Wide Range of Functionalized Biomaterials. Advanced Functional Materials, 2012, 22, 2812-2820.	14.9	41
66	A functional polyester carrying free hydroxyl groups promotes the mineralization of osteoblast and human mesenchymal stem cell extracellular matrix. Acta Biomaterialia, 2014, 10, 2814-2823.	8.3	41
67	Lysine-based polycation:heparin coacervate for controlled protein delivery. Acta Biomaterialia, 2014, 10, 40-46.	8.3	41
68	Controlled Delivery of Sonic Hedgehog Morphogen and Its Potential for Cardiac Repair. PLoS ONE, 2013, 8, e63075.	2.5	40
69	Poly(Glycerol Sebacate) Elastomer: A Novel Material for Mechanically Loaded Bone Regeneration. Tissue Engineering - Part A, 2014, 20, 45-53.	3.1	40
70	Localized Multiâ€Component Delivery Platform Generates Local and Systemic Antiâ€Tumor Immunity. Advanced Functional Materials, 2017, 27, 1604366.	14.9	40
71	A neuroinductive biomaterial based on dopamine. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16681-16686.	7.1	39
72	Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Biomaterials, 2020, 257, 120251.	11.4	39

#	Article	IF	CITATIONS
73	Phosphorylated poly(sebacoyl diglyceride) – a phosphate functionalized biodegradable polymer for bone tissue engineering. Journal of Materials Chemistry B, 2016, 4, 2090-2101.	5.8	38
74	Coacervate delivery of <scp>HBâ€ECF</scp> accelerates healing of type 2 diabetic wounds. Wound Repair and Regeneration, 2015, 23, 591-600.	3.0	37
75	A shear-thinning hydrogel that extends inÂvivo bioactivity of FGF2. Biomaterials, 2016, 111, 80-89.	11.4	37
76	Controlled delivery of platelet-derived proteins enhances porcine wound healing. Journal of Controlled Release, 2017, 253, 73-81.	9.9	37
77	Coacervate Delivery of Growth Factors Combined with a Degradable Hydrogel Preserves Heart Function after Myocardial Infarction. ACS Biomaterials Science and Engineering, 2015, 1, 753-759.	5.2	35
78	A biodegradable synthetic graft for small arteries matches the performance of autologous vein in rat carotid arteries. Biomaterials, 2018, 181, 67-80.	11.4	35
79	Dual physical dynamic bond-based injectable and biodegradable hydrogel for tissue regeneration. Journal of Materials Chemistry B, 2016, 4, 1175-1185.	5.8	34
80	Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels. Biomacromolecules, 2018, 19, 4239-4249.	5.4	34
81	A Biocompatible Arginineâ€Based Polycation. Advanced Functional Materials, 2011, 21, 434-440.	14.9	33
82	Progress of supercritical fluid technology in polymerization and its applications in biomedical engineering. Progress in Polymer Science, 2019, 98, 101161.	24.7	32
83	Chelation Crosslinking of Biodegradable Elastomers. Advanced Materials, 2020, 32, e2003761.	21.0	32
84	A Biocompatible Endothelial Cell Delivery System for in Vitro Tissue Engineering. Cell Transplantation, 2009, 18, 731-743.	2.5	31
85	A functional polymer designed for bone tissue engineering. Acta Biomaterialia, 2012, 8, 502-510.	8.3	30
86	Single injection of IL-12 coacervate as an effective therapy against B16-F10 melanoma in mice. Journal of Controlled Release, 2020, 318, 270-278.	9.9	30
87	Thick PCL Fibers Improving Host Remodeling of PGSâ€PCL Composite Grafts Implanted in Rat Common Carotid Arteries. Small, 2020, 16, e2004133.	10.0	29
88	An Antiâ€angiogenic Reverse Thermal Gel as a Drugâ€Delivery System for Ageâ€Related Wet Macular Degeneration. Macromolecular Bioscience, 2013, 13, 464-469.	4.1	27
89	A controlled release system for simultaneous delivery of three human perivascular stem cellâ€derived factors for tissue repair and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1164-e1172.	2.7	27
90	Poly(glycerol sebacate) nanoparticles for encapsulation of hydrophobic anti-cancer drugs. Polymer Chemistry, 2017, 8, 5033-5038.	3.9	25

#	Article	IF	CITATIONS
91	Control the Mechanical Properties and Degradation of Poly(Glycerol Sebacate) by Substitution of the Hydroxyl Groups with Palmitates. Macromolecular Bioscience, 2020, 20, e2000101.	4.1	25
92	The Role of Antioxidation and Immunomodulation in Postnatal Multipotent Stem Cell-Mediated Cardiac Repair. International Journal of Molecular Sciences, 2013, 14, 16258-16279.	4.1	24
93	Micropatterning Electrospun Scaffolds to Create Intrinsic Vascular Networks. Macromolecular Bioscience, 2014, 14, 1514-1520.	4.1	24
94	Fibroblast Growth Factor-1 Released from a Heparin Coacervate Improves Cardiac Function in a Mouse Myocardial Infarction Model. ACS Biomaterials Science and Engineering, 2017, 3, 1988-1999.	5.2	24
95	Tyramine functionalization of poly(glycerol sebacate) increases the elasticity of the polymer. Journal of Materials Chemistry B, 2017, 5, 6097-6109.	5.8	24
96	Three-Dimensional Printing of Poly(glycerol sebacate) Acrylate Scaffolds <i>via</i> Digital Light Processing. ACS Applied Bio Materials, 2020, 3, 7575-7588.	4.6	24
97	A novel electrospinning target to improve the yield of uniaxially aligned fibers. Biotechnology Progress, 2009, 25, 1169-1175.	2.6	23
98	Fine Control of Polyester Properties via Epoxide ROP Using Monomers Carrying Diverse Functional Groups. Macromolecular Bioscience, 2012, 12, 822-829.	4.1	22
99	Non-invasive Assessment of Elastic Modulus of Arterial Constructs during Cell Culture Using Ultrasound Elasticity Imaging. Ultrasound in Medicine and Biology, 2013, 39, 2103-2115.	1.5	22
100	Biocompatibility of a coacervate-based controlled release system for protein delivery to the injured spinal cord. Acta Biomaterialia, 2015, 11, 204-211.	8.3	21
101	Artificial Niche Combining Elastomeric Substrate and Platelets Guides Vascular Differentiation of Bone Marrow Mononuclear Cells. Tissue Engineering - Part A, 2011, 17, 1979-1992.	3.1	20
102	A biocompatible, metal-free catalyst and its application in microwave-assisted synthesis of functional polyesters. Polymer Chemistry, 2012, 3, 384-389.	3.9	18
103	Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth. ACS Applied Materials & Interfaces, 2016, 8, 9590-9599.	8.0	18
104	Resorbable vascular grafts show rapid cellularization and degradation in the ovine carotid. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1673-1684.	2.7	18
105	A comparison of BMP2 delivery by coacervate and gene therapy for promoting human muscle-derived stem cell-mediated articular cartilage repair. Stem Cell Research and Therapy, 2019, 10, 346.	5.5	17
106	Stress Analysis-Driven Design of Bilayered Scaffolds for Tissue-Engineered Vascular Grafts. Journal of Biomechanical Engineering, 2017, 139, .	1.3	16
107	Influence of fiber architecture and growth factor formulation on osteoblastic differentiation of mesenchymal stem cells in coacervate-coated electrospun fibrous scaffolds. Journal of Industrial and Engineering Chemistry, 2019, 79, 236-244.	5.8	16
108	Elastomeric PGS Scaffolds in Arterial Tissue Engineering. Journal of Visualized Experiments, 2011, , .	0.3	15

#	Article	IF	CITATIONS
109	Hydrostatic pressure independently increases elastin and collagen coâ€expression in smallâ€diameter engineered arterial constructs. Journal of Biomedical Materials Research - Part A, 2011, 96A, 673-681.	4.0	14
110	Poly (glycerol sebacate) elastomer supports osteogenic phenotype for bone engineering applications. Biomedical Materials (Bristol), 2014, 9, 025003.	3.3	14
111	Synthesis and biocompatibility of a biodegradable and functionalizable thermo-sensitive hydrogel. International Journal of Energy Production and Management, 2015, 2, 177-185.	3.7	14
112	Development of Tissue Engineered Heart Valves for Percutaneous Transcatheter Delivery in a Fetal Ovine Model. JACC Basic To Translational Science, 2020, 5, 815-828.	4.1	14
113	Regenerative Potential of Various Soft Polymeric Scaffolds in the Temporomandibular Joint Condyle. Journal of Oral and Maxillofacial Surgery, 2018, 76, 2019-2026.	1.2	13
114	Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 907-916.	3.5	13
115	Imidazoquinoline-Conjugated Degradable Coacervate Conjugate for Local Cancer Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4993-5000.	5.2	13
116	Degradation and erosion mechanisms of bioresorbable porous acellular vascular grafts: an <i>in vitro</i> investigation. Journal of the Royal Society Interface, 2017, 14, 20170102.	3.4	12
117	Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications. Smart Materials in Medicine, 2022, 3, 117-127.	6.7	12
118	Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Engineering - Part A, 2021, 27, 593-603.	3.1	11
119	Poly (fumaroyl bioxirane) maleate: A potential functional scaffold for bone regeneration. Materials Science and Engineering C, 2017, 76, 249-259.	7.3	10
120	Citrate Crosslinked Poly(Glycerol Sebacate) with Tunable Elastomeric Properties. Macromolecular Bioscience, 2021, 21, e2000301.	4.1	10
121	Bioengineered Temporomandibular Joint Disk Implants: Study Protocol for a Two-Phase Exploratory Randomized Preclinical Pilot Trial in 18 Black Merino Sheep (TEMPOJIMS). JMIR Research Protocols, 2017, 6, e37.	1.0	10
122	Poly(glycerol sebacate)—A Novel Biodegradable Elastomer for Tissue Engineering. Materials Research Society Symposia Proceedings, 2002, 724, N11.1.1.	0.1	9
123	Spheroid formation and expression of liver specific functions of primary rat hepatocytes co-cultured with bone marrow cells. Biochemical Engineering Journal, 2004, 20, 223-228.	3.6	9
124	Factorial Design of Experiments to Optimize Multiple Protein Delivery for Cardiac Repair. ACS Biomaterials Science and Engineering, 2016, 2, 879-886.	5.2	9
125	A biocompatible betaine-functionalized polycation for coacervation. Soft Matter, 2018, 14, 387-395.	2.7	9

#	Article	IF	CITATIONS
127	An oligomeric switch that rapidly decreases the peel strength of a pressure-sensitive adhesive. International Journal of Adhesion and Adhesives, 2014, 55, 64-68.	2.9	7
128	Improved mechanical, degradation, and biological performances of Zn–Fe alloys as bioresorbable implants. Bioactive Materials, 2022, 17, 334-343.	15.6	7
129	A randomized controlled preclinical trial on 3 interposal temporomandibular joint disc implants: TEMPOJIMS—Phase 2. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 852-868.	2.7	6
130	Zebrafish extracellular matrix improves neuronal viability and network formation in a 3-dimensional culture. Biomaterials, 2018, 170, 137-146.	11.4	5
131	Investigating Alterations in Caecum Microbiota After Traumatic Brain Injury in Mice. Journal of Visualized Experiments, 2019, , .	0.3	5
132	Azido-Functionalized Polyurethane Designed for Making Tunable Elastomers by Click Chemistry. ACS Biomaterials Science and Engineering, 2020, 6, 852-864.	5.2	5
133	Predicting the outcomes of shunt implantation in patients with post-traumatic hydrocephalus and severe conscious disturbance: a scoring system based on clinical characteristics. Journal of Integrative Neuroscience, 2020, 19, 31.	1.7	5
134	Scale-up synthesis of a polymer designed for protein therapy. European Polymer Journal, 2019, 117, 353-362.	5.4	4
135	Fetal Transcatheter Trileaflet Heart Valve Hemodynamics: Implications of Scaling on Valve Mechanics and Turbulence. Annals of Biomedical Engineering, 2020, 48, 1683-1693.	2.5	4
136	Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomaterials Science and Engineering, 2021, 7, 400-407.	5.2	4
137	The matricellular protein decorin delivered intradermally with coacervate improves wound resolution in the <scp>CXCR3</scp> â€deficient mouse model of hypertrophic scarring. Wound Repair and Regeneration, 2022, 30, 436-447.	3.0	4
138	Controlled Delivery of Sonic Hedgehog with a Heparin-Based Coacervate. Methods in Molecular Biology, 2015, 1322, 1-7.	0.9	3
139	Pharmacological Application of Growth Factors: Basic and Clinical. BioMed Research International, 2015, 2015, 1-2.	1.9	2
140	A Retrospective Clinical Analysis of the Serum Bile Acid Alteration Caused by Traumatic Brain Injury. Frontiers in Neurology, 2021, 12, 624378.	2.4	2
141	Synthesis and Characterization of Alkyne-Functionalized Photo-Cross-Linkable Polyesters. ACS Omega, 2022, 7, 15540-15546.	3.5	2
142	Persistent fibrosis and decreased cardiac function following cardiac injury in the <scp><i>Ctenopharyngodon idella</i></scp> (grass carp). Anatomical Record, 2022, 305, 66-80.	1.4	1
143	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, .	4.6	0
144	Formidable Challenges in the Search for Biomarkers of Psychiatric Disorders. Journal of Tissue Science & Engineering, 2011, 02, .	0.2	0

#	Article	IF	CITATIONS
145	Biorubber: Poly(Glycerol Sebacate). , 0, , 979-986.		0
146	Biorubber: Poly(Glycerol Sebacate). , 2017, , 229-236.		0
147	Pigment epithelium-derived factor engineered to increase glycosaminoglycan affinity while maintaining bioactivity. Biochemical and Biophysical Research Communications, 2022, 605, 148-153.	2.1	0