Joseph Larkin Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170464/publications.pdf

Version: 2024-02-01

279701 302012 40 1,922 23 citations h-index g-index papers

44 44 44 2771 docs citations times ranked citing authors all docs

39

#	Article	IF	CITATIONS
1	Open label safety and efficacy pilot to study mitigation of equine recurrent uveitis through topical suppressor of cytokine signaling-1 mimetic peptide. Scientific Reports, 2022, 12, 7177.	1.6	6
2	Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model. Scientific Reports, 2021, 11, 6354.	1.6	12
3	Antigen-encapsulating host extracellular vesicles derived from Salmonella-infected cells stimulate pathogen-specific Th1-type responses in vivo. PLoS Pathogens, 2021, 17, e1009465.	2.1	26
4	Detection of SARS-CoV-2-Specific IgA in the Human Milk of COVID-19 Vaccinated Lactating Health Care Workers. Breastfeeding Medicine, 2021, 16, 1004-1009.	0.8	34
5	Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Frontiers in Immunology, 2020, 11, 611.	2.2	23
6	Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Frontiers in Pharmacology, 2019, 10, 324.	1.6	50
7	Editorial: The Dynamic Role of Suppressor of Cytokine Signaling Proteins in the Regulation of Immune and Autoimmune Responses. Frontiers in Immunology, 2017, 8, 825.	2.2	1
8	SOCS1 Mimetic Peptide Suppresses Chronic Intraocular Inflammatory Disease (Uveitis). Mediators of Inflammation, 2016, 2016, 1-15.	1.4	29
9	Sparse serological evidence of Plasmodium vivax transmission in the Ouest and Sud-Est departments of Haiti. Acta Tropica, 2016, 162, 27-34.	0.9	9
10	Therapeutic Potential for Targeting the Suppressor of Cytokine Signallingâ€1 Pathway for the Treatment of <scp>SLE</scp> . Scandinavian Journal of Immunology, 2016, 84, 299-309.	1.3	18
11	SOCS1 Mimetics and Antagonists: A Complementary Approach to Positive and Negative Regulation of Immune Function. Frontiers in Immunology, 2015, 6, 183.	2.2	65
12	A SOCS1/3 Antagonist Peptide Protects Mice Against Lethal Infection with Influenza A Virus. Frontiers in Immunology, 2015, 6, 574.	2.2	18
13	Topical administration of a suppressor of cytokine signaling-1 (SOCS1) mimetic peptide inhibits ocular inflammation and mitigates ocular pathology during mouse uveitis. Journal of Autoimmunity, 2015, 62, 31-38.	3.0	31
14	Age-specific malaria seroprevalence rates: a cross-sectional analysis of malaria transmission in the Ouest and Sud-Est departments of Haiti. Malaria Journal, 2014, 13, 361.	0.8	28
15	Regulation of Interferon Gamma Signaling by Suppressors of Cytokine Signaling and Regulatory T Cells. Frontiers in Immunology, 2013, 4, 469.	2.2	31
16	Therapeutic targeting of STAT pathways in CNS autoimmune diseases. Jak-stat, 2013, 2, e24134.	2.2	37
17	Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes. Journal of Visualized Experiments, 2013, , e50765.	0.2	22
18	Th17 Cells in Immunity and Autoimmunity. Clinical and Developmental Immunology, 2013, 2013, 1-16.	3.3	204

#	Article	IF	CITATIONS
19	Cytokine Biology-Cytokines at the Interface of Health and Disease. Journal of Clinical & Cellular Immunology, 2013, 04, .	1.5	1
20	The Immune System uses iTregs to keep from giving Non-pathogenic Microorganisms a "Time-Out― Air & Water Borne Diseases, 2012, 01, .	0.3	0
21	The kinase inhibitory region of SOCS-1 is sufficient to inhibit T-helper 17 and other immune functions in experimental allergic encephalomyelitis. Journal of Neuroimmunology, 2011, 232, 108-118.	1.1	65
22	Inhibition of Type 1 Diabetes Correlated to a <i>Lactobacillus johnsonii</i> N6.2-Mediated Th17 Bias. Journal of Immunology, 2011, 186, 3538-3546.	0.4	147
23	Inhibition of SOCS1â^'/â^' Lethal Autoinflammatory Disease Correlated to Enhanced Peripheral Foxp3+ Regulatory T Cell Homeostasis. Journal of Immunology, 2011, 187, 2666-2676.	0.4	22
24	Lactobacillus johnsonii N6.2 Mitigates the Development of Type 1 Diabetes in BB-DP Rats. PLoS ONE, 2010, 5, e10507.	1.1	227
25	Autoantibody production in lpr/lpr gld/gld mice reflects accumulation of CD4+ effector cells that are resistant to regulatory T cell activity. Journal of Autoimmunity, 2008, 31, 98-109.	3.0	11
26	CD4+ T Cells Recognizing a Single Self-Peptide Expressed by APCs Induce Spontaneous Autoimmune Arthritis. Journal of Immunology, 2008, 180, 833-841.	0.4	26
27	CD4+CD25+Regulatory T Cell Repertoire Formation Shaped by Differential Presentation of Peptides from a Self-Antigen. Journal of Immunology, 2008, 180, 2149-2157.	0.4	44
28	Spontaneous Autoreactive Memory B Cell Formation Driven by a High Frequency of Autoreactive CD4+T Cells. Journal of Immunology, 2007, 178, 4793-4802.	0.4	15
29	Activation of CD4+CD25+ regulatory T cell suppressor function by analogs of the selecting peptide. European Journal of Immunology, 2007, 37, 139-146.	1.6	23
30	Role of TCR specificity in CD4+CD25+ regulatory T-cell selection. Immunological Reviews, 2006, 212, 74-85.	2.8	84
31	Positive and Negative Regulation of the IL-27 Receptor during Lymphoid Cell Activation. Journal of Immunology, 2005, 174, 7684-7691.	0.4	154
32	CD4+ CD25+ Regulatory T Cell Repertoire Formation in Response to Varying Expression of a neo-Self-Antigen. Journal of Immunology, 2004, 173, 236-244.	0.4	68
33	CD4+CD25+Regulatory T Cell Selection. Annals of the New York Academy of Sciences, 2004, 1029, 101-114.	1.8	35
34	Cutting Edge: Self-Peptides Drive the Peripheral Expansion of CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2003, 171, 5678-5682.	0.4	158
35	Nuclear Translocation of IFN- \hat{I}^3 Is an Intrinsic Requirement for Its Biologic Activity and Can Be Driven by a Heterologous Nuclear Localization Sequence. Journal of Interferon and Cytokine Research, 2001, 21, 951-959.	0.5	39
36	Differential Properties of Two Putative Nuclear Localization Sequences Found in the Carboxyl-Terminus of Human IFN-Î ³ . Journal of Interferon and Cytokine Research, 2001, 21, 341-348.	0.5	9

#	Article	IF	CITATIONS
37	Differential Nuclear Localization of the IFNGR-1 and IFNGR-2 Subunits of the IFN-Î ³ Receptor Complex Following Activation by IFN-Î ³ . Journal of Interferon and Cytokine Research, 2000, 20, 565-576.	0.5	58
38	Human IFNÎ ³ Receptor Cytoplasmic Domain: Expression and Interaction with HuIFNÎ ³ . Biochemical and Biophysical Research Communications, 1998, 243, 170-176.	1.0	20
39	Cytokine-Receptor Complexes as Chaperones for Nuclear Translocation of Signal Transducers. Biochemical and Biophysical Research Communications, 1998, 244, 607-614.	1.0	45
40	Hypothesis: Ligand/Receptor-Assisted Nuclear Translocation of STATs. Experimental Biology and Medicine, 1998, 218, 149-155.	1.1	21