

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170441/publications.pdf Version: 2024-02-01

P-X Hu

#	Article	IF	CITATIONS
1	Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth and Planetary Science Letters, 2013, 369-370, 271-283.	4.4	95
2	Testing the magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China. Global and Planetary Change, 2013, 110, 368-378.	3.5	69
3	Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India–Eurasia collision and Tibetan Plateau deformation. Earth and Planetary Science Letters, 2018, 486, 41-53.	4.4	59
4	Magnetostratigraphy of Chinese loess–paleosol sequences. Earth-Science Reviews, 2015, 150, 139-167.	9.1	57
5	Soil moisture balance and magnetic enhancement in loess–paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau. Earth and Planetary Science Letters, 2015, 409, 120-132.	4.4	56
6	Domain State Diagnosis in Rock Magnetism: Evaluation of Potential Alternatives to the Day Diagram. Journal of Geophysical Research: Solid Earth, 2019, 124, 5286-5314.	3.4	44
7	Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: Indications for pedogenesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293, 144-156.	2.3	43
8	Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward. Geoscience Letters, 2020, 7, .	3.3	30
9	Estimating the concentration of aluminumâ€substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations. Journal of Geophysical Research: Solid Earth, 2016, 121, 4180-4194.	3.4	28
10	Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain. Frontiers in Microbiology, 2014, 5, 71.	3.5	26
11	Quantification of Al-goethite from diffuse reflectance spectroscopy and magnetic methods. Geophysical Journal International, 2014, 196, 131-144.	2.4	22
12	Soil formation and mineralogy of a Rhodic Luvisol — insights from magnetic and geochemical studies. Global and Planetary Change, 2013, 110, 397-413.	3.5	21
13	Characterizing magnetic mineral assemblages of surface sediments from major Asian dust sources and implications for the Chinese loess magnetism. Earth, Planets and Space, 2015, 67, .	2.5	21
14	Simulation of Remanent, Transient, and Induced FORC Diagrams for Interacting Particles With Uniaxial, Cubic, and Hexagonal Anisotropy. Journal of Geophysical Research: Solid Earth, 2019, 124, 12404-12429.	3.4	18
15	Mechanism of variations in environmental magnetic proxies of lake sediments from Nam Co, Tibet during the Holocene. Science Bulletin, 2013, 58, 1568-1578.	1.7	15
16	Organic carbon burial in Mediterranean sapropels intensified during Green Sahara Periods since 3.2 Myr ago. Communications Earth & Environment, 2022, 3, .	6.8	15
17	Unlocking information about fine magnetic particle assemblages from first-order reversal curve diagrams: Recent advances. Earth-Science Reviews, 2022, 227, 103950.	9.1	15
18	Tectonic, climatic, and diagenetic control of magnetic properties of sediments from Kumano Basin, Nankai margin, southwestern Japan. Marine Geology, 2017, 391, 1-12.	2.1	14

P-X Hu

#	Article	IF	CITATIONS
19	Magnetic Domain State Diagnosis in Soils, Loess, and Marine Sediments From Multiple Firstâ€Order Reversal Curveâ€Type Diagrams. Journal of Geophysical Research: Solid Earth, 2018, 123, 998-1017.	3.4	9
20	Continental-scale magnetic properties of surficial Australian soils. Earth-Science Reviews, 2020, 203, 103028.	9.1	9
21	An Automatic Model Selectionâ€Based Machine Learning Framework to Estimate FORC Distributions. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020418.	3.4	9
22	Magnetic Domain State and Anisotropy in Hematite (<i>α</i> â€Fe ₂ O ₃) From Firstâ€Order Reversal Curve Diagrams. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB023027.	3.4	8
23	Factors Controlling Magnetism of Reddish Brown Soil Profiles from Calcarenites in Southern Spain: Dust Input or In-situ Pedogenesis?. Frontiers in Earth Science, 2016, 4, .	1.8	7
24	Assessment and Integration of Bulk and Componentâ€Specific Methods for Identifying Mineral Magnetic Assemblages in Environmental Magnetism. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019024.	3.4	7
25	Rock magnetic investigation of loess deposits in the Eastern Qingling Mountains (central China) and its implications for the environment of early humans. Geophysical Journal International, 2016, 207, 889-900.	2.4	5
26	Assessment of Magnetic Techniques for Understanding Complex Mixtures of Magnetite and Hematite: The Inuyama Red Chert. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	5
27	An integrated natural remanent magnetization acquisition model for the Matuyamaâ€Brunhes reversal recorded by the Chinese loess. Geochemistry, Geophysics, Geosystems, 2016, 17, 3150-3163.	2.5	1
28	Lowâ€Temperature Magnetic Properties of Marine Sediments—Quantifying Magnetofossils, Superparamagnetism, and Maghemitization: Eastern Mediterranean Examples. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021793.	3.4	1