Chengran Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Advances, 2018, 8, 16260-16268.	3.6	97
2	Occurrence of Veterinary Antibiotics in Swine Manure from Large-scale Feedlots in Zhejiang Province, China. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 472-477.	2.7	56
3	Sorption of tetracycline on biochar derived from rice straw under different temperatures. PLoS ONE, 2017, 12, e0182776.	2.5	46
4	Removal of phthalic acid diesters through a municipal solid waste landfill leachate treatment process. Journal of Material Cycles and Waste Management, 2018, 20, 585-591.	3.0	27
5	Effects of di-n-butyl phthalate and di-2-ethylhexyl phthalate on pollutant removal and microbial community during wastewater treatment. Ecotoxicology and Environmental Safety, 2020, 198, 110665.	6.0	24
6	Antibiotics in Leachates from Landfills in Northern Zhejiang Province, China. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 36-40.	2.7	20
7	The panorama of antibiotics and the related antibiotic resistance genes (ARGs) in landfill leachate. Waste Management, 2022, 144, 19-28.	7.4	20
8	Adsorption of tetracycline and Cd(II) on polystyrene and polyethylene terephthalate microplastics with ultraviolet and hydrogen peroxide aging treatment. Science of the Total Environment, 2022, 845, 157109.	8.0	18
9	Effective degradation of Di-n-butyl phthalate by reusable, magnetic Fe3O4 nanoparticle-immobilized Pseudomonas sp. W1 and its application in simulation. Chemosphere, 2020, 250, 126339.	8.2	17
10	Sulfate-reduction behavior in waste-leachate transition zones of landfill sites. Journal of Hazardous Materials, 2022, 428, 128199.	12.4	14
11	Influence of interfering anions on Cu ²⁺ and Zn ²⁺ ions removal on chestnut outer shell-derived hydrochars in aqueous solution. RSC Advances, 2017, 7, 51199-51205.	3.6	12
12	Microbes drive changes in arsenic species distribution during the landfill process. Environmental Pollution, 2022, 292, 118322.	7.5	11
13	Effect of substrate sulfur state on MM and DMS emissions in landfill. Waste Management, 2020, 116, 112-119.	7.4	10
14	Drivers and ecological consequences of arsenite detoxification in aged semi-aerobic landfill. Journal of Hazardous Materials, 2021, 420, 126597.	12.4	10
15	REMOVAL OF PHTHALIC ACID DIESTERS IN THE MUNICIPAL SOLID WASTE INCINERATION PLANT LEACHATE TREATMENT PROCESS. Environmental Engineering and Management Journal, 2016, 15, 2127-2133.	0.6	10
16	Evolution of sulfate reduction behavior in leachate saturated zones in landfills. Waste Management, 2022, 141, 52-62.	7.4	10
17	Transformation of di-n-butyl phthalate in an anaerobic/anoxic/oxic leachate treatment process. Journal of Material Cycles and Waste Management, 2020, 22, 221-227.	3.0	9
18	Effects of adding biochar on tetracycline removal during anaerobic composting of swine manure. Chemistry and Ecology, 2018, 34, 86-97.	1.6	8

Chengran Fang

#	Article	IF	CITATIONS
19	Removal of Di-n-butyl phthalate from aged leachate under optimal hydraulic condition of leachate treatment process and in the presence of its dominant bacterial strains. Ecotoxicology and Environmental Safety, 2021, 222, 112532.	6.0	6
20	Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach. Frontiers of Energy and Power Engineering in China, 2010, 5, 340.	0.4	5
21	Transformation of phthalic acid diesters in an anaerobic/anoxic/oxic leachate treatment process. Chinese Journal of Chemical Engineering, 2020, 28, 249-253.	3.5	5
22	Antibiotics in the municipal solid waste incineration plant leachate treatment process. Chemistry and Ecology, 2021, 37, 633-645.	1.6	4
23	Effect of air and water on the release of chlorine from semi-aerobic landfill. Environmental Technology (United Kingdom), 2022, 43, 2197-2206.	2.2	3
24	Removal of phthalic acid dieters with dissolved organic matter by an anaerobic/anoxic/oxic leachate treatment process. RSC Advances, 2019, 9, 38807-38813.	3.6	2
25	Effect of Dissimilatory Iron Reduction on the Reduction of CH4Production in Landfill Conditions. Journal of Chemistry, 2019, 2019, 1-10.	1.9	1
26	Effect of hydraulic parameters of leachate treatment process on di(2-ethylhexyl) phthalate removal from aged leachate. Environmental Technology (United Kingdom), 2022, , 1-10.	2.2	0