
William G T Willats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8169384/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pectin: new insights into an old polymer are starting to gel. Trends in Food Science and Technology, 2006, 17, 97-104.	7.8	707
2	Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annual Review of Plant Biology, 2011, 62, 567-590.	8.6	613
3	Modulation of the Degree and Pattern of Methyl-esterification of Pectic Homogalacturonan in Plant Cell Walls. Journal of Biological Chemistry, 2001, 276, 19404-19413.	1.6	528
4	The role of the cell wall in plant immunity. Frontiers in Plant Science, 2014, 5, 178.	1.7	392
5	Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology, 2008, 8, 60.	1.6	375
6	Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydrate Research, 1998, 308, 149-152.	1.1	362
7	Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6287-6292.	3.3	358
8	The Cell Walls of Green Algae: A Journey through Evolution and Diversity. Frontiers in Plant Science, 2012, 3, 82.	1.7	319
9	High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant Journal, 2007, 50, 1118-1128.	2.8	286
10	Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydrate Research, 2003, 338, 1797-1800.	1.1	277
11	Pectin: cell biology and prospects for functional analysis. , 2001, , 9-27.		247
12	The charophycean green algae provide insights into the early origins of plant cell walls. Plant Journal, 2011, 68, 201-211.	2.8	226
13	Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant Journal, 2010, 64, 191-203.	2.8	217
14	Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta, 1996, 198, 452-459.	1.6	213
15	Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research. Journal of Biological Chemistry, 2012, 287, 39429-39438.	1.6	207
16	Functional Genomic Analysis Supports Conservation of Function Among Cellulose Synthase-Like A Gene Family Members and Suggests Diverse Roles of Mannans in Plants. Plant Physiology, 2007, 143, 1881-1893.	2.3	201
17	Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research, 2000, 327, 309-320.	1.1	199
18	Phage display: practicalities and prospects. Plant Molecular Biology, 2002, 50, 837-854.	2.0	177

#	Article	IF	CITATIONS
19	Sugar-coated microarrays: A novel slide surface for the high-throughput analysis of glycans. Proteomics, 2002, 2, 1666-1671.	1.3	176
20	Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to <i>Botrytis</i> . Plant Physiology, 2017, 173, 1844-1863.	2.3	165
21	High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconjugate Journal, 2008, 25, 37-48.	1.4	155
22	Mixedâ€linkage (1→3),(1→4)â€Î² <scp>â€dâ€</scp> glucan is not unique to the Poales and is an abundant com <i>Equisetum arvense</i> cell walls. Plant Journal, 2008, 54, 510-521.	ponent of 2.8	151
23	Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant Journal, 1999, 20, 619-628.	2.8	150
24	In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta, 2001, 213, 37-44.	1.6	146
25	Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant Journal, 2004, 40, 260-275.	2.8	144
26	The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants. Plant Signaling and Behavior, 2012, 7, 1-3.	1.2	144
27	Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nature Microbiology, 2018, 3, 1274-1284.	5.9	144
28	Functional Analysis of the Cellulose Synthase-Like Genes <i>CSLD1</i> , <i>CSLD2</i> , and <i>CSLD4</i> in Tip-Growing Arabidopsis Cells. Plant Physiology, 2008, 148, 1238-1253.	2.3	142
29	GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Research, 2008, 36, W320-W326.	6.5	139
30	Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta, 2013, 237, 739-754.	1.6	137
31	Polyploidy Affects Plant Growth and Alters Cell Wall Composition. Plant Physiology, 2019, 179, 74-87.	2.3	134
32	Solid-phase chemical tools for glycobiology. Carbohydrate Research, 2006, 341, 1209-1234.	1.1	132
33	Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome, 2015, 3, 16.	4.9	132
34	Understanding CrRLK1L Function: Cell Walls and Growth Control. Trends in Plant Science, 2016, 21, 516-527.	4.3	129
35	Altered Middle Lamella Homogalacturonan and Disrupted Deposition of (1→5)-α-l-Arabinan in the Pericarp ofCnr, a Ripening Mutant of Tomato. Plant Physiology, 2001, 126, 210-221.	2.3	127
36	How Have Plant Cell Walls Evolved?. Plant Physiology, 2010, 153, 366-372.	2.3	122

#	Article	IF	CITATIONS
37	A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta, 2004, 218, 673-681.	1.6	116
38	Identification of a Xylogalacturonan Xylosyltransferase Involved in Pectin Biosynthesis in <i>Arabidopsis</i> Â Ă. Plant Cell, 2008, 20, 1289-1302.	3.1	116
39	SnRK1 from <i>Arabidopsis thaliana</i> is an atypical <scp>AMPK</scp> . Plant Journal, 2015, 82, 183-192.	2.8	115
40	Cell wall antibodies without immunization: generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant Journal, 1999, 18, 57-65.	2.8	106
41	The Cooperative Activities of CSLD2, CSLD3, and CSLD5 Are Required for Normal Arabidopsis Development. Molecular Plant, 2011, 4, 1024-1037.	3.9	106
42	Pectin Metabolism and Assembly in the Cell Wall of the Charophyte Green Alga <i>Penium margaritaceum</i> . Plant Physiology, 2014, 165, 105-118.	2.3	106
43	Disruption of <i>ATCSLD5</i> results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant Journal, 2007, 52, 791-802.	2.8	101
44	Cell wall evolution and diversity. Frontiers in Plant Science, 2012, 3, 152.	1.7	99
45	Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocolloids, 2014, 40, 273-282.	5.6	92
46	Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes. Development (Cambridge), 2014, 141, 4841-4850.	1.2	88
47	Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in <i>Fucus serratus</i> embryo development. New Phytologist, 2016, 209, 1428-1441.	3.5	87
48	Making and using antibody probes to study plant cell walls. Plant Physiology and Biochemistry, 2000, 38, 27-36.	2.8	85
49	A Specialized Outer Layer of the Primary Cell Wall Joins Elongating Cotton Fibers into Tissue-Like Bundles Â. Plant Physiology, 2009, 150, 684-699.	2.3	80
50	Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Annals of Botany, 2014, 114, 1217-1236.	1.4	80
51	Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta, 2002, 215, 440-447.	1.6	74
52	The Arabidopsis co-expression tool (act): a WWW-based tool and database for microarray-based gene expression analysis. Plant Journal, 2006, 46, 336-348.	2.8	69
53	The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall. PLoS ONE, 2012, 7, e35846.	1.1	68

#	Article	IF	CITATIONS
55	Characterization of the primary cell walls of seedlings of Brachypodium distachyon – A potential model plant for temperate grasses. Phytochemistry, 2010, 71, 62-69.	1.4	61
56	Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. Plant Cell, 2015, 27, 1218-1227.	3.1	61
57	Complexity of the <i>Ruminococcus flavefaciens</i> cellulosome reflects an expansion in glycan recognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7136-7141.	3.3	58
58	Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics. Plant Physiology, 2018, 176, 1547-1558.	2.3	58
59	Diatom fucan polysaccharide precipitates carbon during algal blooms. Nature Communications, 2021, 12, 1150.	5.8	58
60	The effect of calcium ions on adhesion and competitive exclusion of Lactobacillus ssp. and E. coli O138. International Journal of Food Microbiology, 2007, 114, 113-119.	2.1	56
61	Pectic-β(1,4)-galactan, extensin and arabinogalactan–protein epitopes differentiate ripening stages in wine and table grape cell walls. Annals of Botany, 2014, 114, 1279-1294.	1.4	55
62	The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon. Biotechnology for Biofuels, 2018, 11, 171.	6.2	55
63	Microbiota-directed fibre activates both targeted and secondary metabolic shifts in the distal gut. Nature Communications, 2020, 11, 5773.	5.8	55
64	The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara corallina. Annals of Botany, 2009, 104, 1045-1056.	1.4	54
65	Range of cell-wall alterations enhance saccharification in <i>Brachypodium distachyon</i> mutants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14601-14606.	3.3	53
66	Dissecting the polysaccharide-rich grape cell wall changes during winemaking using combined high-throughput and fractionation methods. Carbohydrate Polymers, 2015, 133, 567-577.	5.1	53
67	Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls. Planta, 2015, 242, 1321-1334.	1.6	53
68	Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis. Food and Bioprocess Technology, 2017, 10, 143-154.	2.6	53
69	Stable transformation and reverse genetic analysis of <i><scp>P</scp>enium margaritaceum</i> : a platform for studies of charophyte green algae, the immediate ancestors of land plants. Plant Journal, 2014, 77, 339-351.	2.8	52
70	Cell wall composition profiling of parasitic giant dodder (<i><scp>C</scp>uscuta reflexa</i>) and its hosts: <i>a priori</i> differences and induced changes. New Phytologist, 2015, 207, 805-816.	3.5	52
71	A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes. Journal of Biological Chemistry, 2015, 290, 9020-9036.	1.6	52
72	Inactivation of OsIRX10 Leads to Decreased Xylan Content in Rice Culm Cell Walls and Improved Biomass Saccharification. Molecular Plant, 2013, 6, 570-573.	3.9	50

#	Article	IF	CITATIONS
73	An oligogalacturonideâ€derived molecular probe demonstrates the dynamics of calciumâ€mediated pectin complexation in cell walls of tipâ€growing structures. Plant Journal, 2017, 91, 534-546.	2.8	50
74	Silencing of acidic pathogenesis-related PR-1 genes increases extracellular Â-(1->3)-glucanase activity at the onset of tobacco defence reactions. Journal of Experimental Botany, 2008, 59, 1225-1239.	2.4	48
75	Following the Compositional Changes of Fresh Grape Skin Cell Walls during the Fermentation Process in the Presence and Absence of Maceration Enzymes. Journal of Agricultural and Food Chemistry, 2015, 63, 2798-2810.	2.4	48
76	Recognition of xyloglucan by the crystalline celluloseâ€binding site of a family 3a carbohydrateâ€binding module. FEBS Letters, 2015, 589, 2297-2303.	1.3	46
77	Flagella interact with ionic plant lipids to mediate adherence of pathogenic <i>Escherichia coli</i> to fresh produce plants. Environmental Microbiology, 2014, 16, 2181-2195.	1.8	43
78	The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens. PLoS ONE, 2011, 6, e17506.	1.1	42
79	In vitro Biochemical Characterization of All Barley Endosperm Starch Synthases. Frontiers in Plant Science, 2015, 6, 1265.	1.7	42
80	Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: Vintage and ripeness effects. Food Chemistry, 2019, 278, 36-46.	4.2	41
81	Immunoprofiling of Pectic Polysaccharides. Analytical Biochemistry, 1999, 268, 143-146.	1.1	40
82	A monoclonal antibody to feruloylated-(1?4)-?-d-galactan. Planta, 2004, 219, 1036-1041.	1.6	40
83	Separating Golgi Proteins from <i>Cis</i> to <i>Trans</i> Reveals Underlying Properties of Cisternal Localization. Plant Cell, 2019, 31, 2010-2034.	3.1	40
84	Recognition of the Helical Structure of β-1,4-Galactan by a New Family of Carbohydrate-binding Modules. Journal of Biological Chemistry, 2010, 285, 35999-36009.	1.6	39
85	Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics. Plant Physiology, 2017, 174, 1051-1066.	2.3	38
86	Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods. Carbohydrate Polymers, 2014, 99, 190-198.	5.1	35
87	Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC Plant Biology, 2015, 15, 56.	1.6	35
88	Structural basis for the role of serine-rich repeat proteins from <i>Lactobacillus reuteri</i> in gut microbe–host interactions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2706-E2715.	3.3	35
89	The Three Members of the Arabidopsis Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases. Plant and Cell Physiology, 2018, 59, 2624-2636.	1.5	35
90	Profiling the main cell wall polysaccharides of tobacco leaves using high-throughput and fractionation techniques. Carbohydrate Polymers, 2012, 88, 939-949.	5.1	34

#	Article	IF	CITATIONS
91	A Bacterial Glucanotransferase Can Replace the Complex Maltose Metabolism Required for Starch to Sucrose Conversion in Leaves at Night. Journal of Biological Chemistry, 2013, 288, 28581-28598.	1.6	34
92	Two SusD-Like Proteins Encoded within a Polysaccharide Utilization Locus of an Uncultured Ruminant Bacteroidetes Phylotype Bind Strongly to Cellulose. Applied and Environmental Microbiology, 2012, 78, 5935-5937.	1.4	33
93	Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, <i>Penium margaritaceum</i> . Journal of Experimental Botany, 2014, 65, 465-479.	2.4	32
94	Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion. GCB Bioenergy, 2014, 6, 90-96.	2.5	32
95	Investigating the relationship between cell wall polysaccharide composition and the extractability of grape phenolic compounds into Shiraz wines. Part II: Extractability during fermentation into wines made from grapes of different ripeness levels. Food Chemistry, 2019, 278, 26-35.	4.2	32
96	Escherichia coli Common Pilus (ECP) Targets Arabinosyl Residues in Plant Cell Walls to Mediate Adhesion to Fresh Produce Plants. Journal of Biological Chemistry, 2014, 289, 34349-34365.	1.6	31
97	Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species. Planta, 2012, 236, 739-751.	1.6	30
98	Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 2015, 3, 10.	1.8	30
99	Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking. Carbohydrate Polymers, 2016, 152, 510-519.	5.1	30
100	Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection. BMC Plant Biology, 2013, 13, 46.	1.6	28
101	Highâ€ŧhroughput microarray profiling of cell wall polymers during hydrothermal preâ€ŧreatment of wheat straw. Biotechnology and Bioengineering, 2010, 105, 509-514.	1.7	27
102	Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-d-galactotetraose. Carbohydrate Research, 2016, 436, 36-40.	1.1	27
103	Comparative glycan profiling of Ceratopteris richardii â€~C-Fern' gametophytes and sporophytes links cell-wall composition to functional specialization. Annals of Botany, 2014, 114, 1295-1307.	1.4	26
104	The Deconstruction of Pectic Rhamnogalacturonan I Unmasks the Occurrence of a Novel Arabinogalactan Oligosaccharide Epitope. Plant and Cell Physiology, 2015, 56, pcv128.	1.5	26
105	Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil. Physiologia Plantarum, 2006, 127, 87-99.	2.6	25
106	An array of possibilities for pectin. Carbohydrate Research, 2009, 344, 1872-1878.	1.1	25
107	Exploring the Glycans of Euglena gracilis. Biology, 2017, 6, 45.	1.3	25
108	Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique. PLoS ONE, 2017, 12, e0173313.	1.1	25

#	Article	IF	CITATIONS
109	Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls. Frontiers in Plant Science, 2015, 6, 628.	1.7	24
110	Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray. Planta, 2016, 244, 347-359.	1.6	24
111	Ancient origin of fucosylated xyloglucan in charophycean green algae. Communications Biology, 2021, 4, 754.	2.0	24
112	Simultaneous in vivo truncation of pectic side chains. Transgenic Research, 2009, 18, 961-969.	1.3	22
113	Synthesis of βâ€1,4â€Linked Galactan Sideâ€Chains of Rhamnogalacturonanâ€I. Chemistry - A European Journa 2016, 22, 11543-11548.	al, 1.7	22
114	Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development. Plant and Cell Physiology, 2015, 56, 1786-1797.	1.5	21
115	Characterisation of the arabinose-rich carbohydrate composition of immature and mature marama beans (Tylosema esculentum). Phytochemistry, 2011, 72, 1466-1472.	1.4	20
116	Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development. Plant and Cell Physiology, 2016, 57, 2058-2075.	1.5	20
117	Glycan Profiling of Plant Cell Wall Polymers using Microarrays. Journal of Visualized Experiments, 2012, , e4238.	0.2	19
118	Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes. Journal of Agricultural and Food Chemistry, 2015, 63, 8267-8274.	2.4	19
119	Tracking polysaccharides through the brewing process. Carbohydrate Polymers, 2018, 196, 465-473.	5.1	19
120	Development of novel monoclonal antibodies against starch and ulvan - implications for antibody production against polysaccharides with limited immunogenicity. Scientific Reports, 2017, 7, 9326.	1.6	18
121	Double blind microarray-based polysaccharide profiling enables parallel identification of uncharacterized polysaccharides and carbohydrate-binding proteins with unknown specificities. Scientific Reports, 2018, 8, 2500.	1.6	18
122	Analyses of Aloe Polysaccharides Using Carbohydrate Microarray Profiling. Journal of AOAC INTERNATIONAL, 2018, 101, 1720-1728.	0.7	18
123	Isolation and characterisation of the homogalacturonan from type II cell walls of the commelinoid monocot wheat using HF-solvolysis. Carbohydrate Research, 2003, 338, 423-431.	1.1	17
124	Screening and Characterization of Plant Cell Walls Using Carbohydrate Microarrays. Methods in Molecular Biology, 2011, 715, 115-121.	0.4	17
125	Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace. Food Chemistry, 2017, 232, 340-350.	4.2	17
126	Adaptation of <i>Arabidopsis halleri</i> to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. New Phytologist, 2021, 230, 669-682.	3.5	17

#	Article	IF	CITATIONS
127	Carbohydrate Microarrays in Plant Science. Methods in Molecular Biology, 2012, 918, 351-362.	0.4	15
128	Understanding the Relationship between Cotton Fiber Properties and Non-Cellulosic Cell Wall Polysaccharides. PLoS ONE, 2014, 9, e112168.	1.1	15
129	Effect of Commercial Enzymes on Berry Cell Wall Deconstruction in the Context of Intravineyard Ripeness Variation under Winemaking Conditions. Journal of Agricultural and Food Chemistry, 2016, 64, 3862-3872.	2.4	15
130	The impact of carbohydrate-active enzymes on mediating cell wall polysaccharide-tannin interactions in a wine-like matrix. Food Research International, 2020, 129, 108889.	2.9	15
131	Highâ€ŧhroughput screening of <i>Erwinia chrysanthemi</i> pectin methylesterase variants using carbohydrate microarrays. Proteomics, 2009, 9, 1861-1868.	1.3	13
132	Click chemistry-based tracking reveals putative cell wall-located auxin binding sites in expanding cells. Scientific Reports, 2017, 7, 15988.	1.6	13
133	Combinatorial Glycomic Analyses to Direct CAZyme Discovery for the Tailored Degradation of Canola Meal Non-Starch Dietary Polysaccharides. Microorganisms, 2020, 8, 1888.	1.6	12
134	Synthesis and Application of Branched Type II Arabinogalactans. Journal of Organic Chemistry, 2017, 82, 12066-12084.	1.7	11
135	Understanding Changes in Tomato Cell Walls in Roots and Fruits: The Contribution of Arbuscular Mycorrhizal Colonization. International Journal of Molecular Sciences, 2019, 20, 415.	1.8	11
136	Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development. Planta, 2019, 249, 1565-1581.	1.6	11
137	A putative Arabidopsis thaliana glycosyltransferase, At4g01220, which is closely related to three plant cell wall-specific xylosyltransferases, is differentially expressed spatially and temporally. Plant Science, 2011, 180, 470-479.	1.7	10
138	Non-Cellulosic Polysaccharides from Cotton Fibre Are Differently Impacted by Textile Processing. PLoS ONE, 2014, 9, e115150.	1.1	10
139	A multivariate approach for high throughput pectin profiling by combining glycan microarrays with monoclonal antibodies. Carbohydrate Research, 2015, 409, 41-47.	1.1	9
140	Detection of Seasonal Variation in Aloe Polysaccharides Using Carbohydrate Detecting Microarrays. Frontiers in Plant Science, 2019, 10, 512.	1.7	9
141	Extensin arabinoside chain length is modulated in elongating cotton fibre. Cell Surface, 2019, 5, 100033.	1.5	9
142	Analytical implications of different methods for preparing plant cell wall material. Carbohydrate Polymers, 2021, 261, 117866.	5.1	9
143	Differences in berry skin and pulp cell wall polysaccharides from ripe and overripe Shiraz grapes evaluated using glycan profiling reveals extensin-rich flesh. Food Chemistry, 2021, 363, 130180.	4.2	8
144	Penium margaritaceum as a Model Organism for Cell Wall Analysis of Expanding Plant Cells. Methods in Molecular Biology, 2015, 1242, 1-21.	0.4	7

#	ARTICLE	IF	CITATIONS
145	Untangling the impact of red wine maceration times on wine ageing. A multidisciplinary approach focusing on extended maceration in Shiraz wines. Food Research International, 2021, 150, 110697.	2.9	6
146	Plant science in the age of phage. Trends in Plant Science, 2004, 9, 465-468.	4.3	5
147	High-throughput Screening of Carbohydrate-degrading Enzymes Using Novel Insoluble Chromogenic Substrate Assay Kits. Journal of Visualized Experiments, 2016, , .	0.2	5
148	Synthesis of branched and linear 1,4-linked galactan oligosaccharides. Organic and Biomolecular Chemistry, 2018, 16, 1157-1162.	1.5	5
149	Tracking polysaccharides during white winemaking using glycan microarrays reveals glycoprotein-rich sediments. Food Research International, 2019, 123, 662-673.	2.9	5
150	High-resolution 3D mapping of rhizosphere glycan patterning using molecular probes in a transparent soil system. Cell Surface, 2021, 7, 100059.	1.5	5
151	Microarray Glycan Profiling Reveals Algal Fucoidan Epitopes in Diverse Marine Metazoans. Frontiers in Marine Science, 2017, 4, .	1.2	3
152	Overexpression of VviPGIP1 and NtCAD14 in Tobacco Screened Using Glycan Microarrays Reveals Cell Wall Reorganisation in the Absence of Fungal Infection. Vaccines, 2020, 8, 388.	2.1	2
153	Removal of eDNA from fabrics using a novel laundry DNase revealed using high-resolution imaging. Scientific Reports, 2021, 11, 21542.	1.6	2
154	Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays. Annals of Botany, 2021, 128, 527-543.	1.4	1
155	Pectin Cell Biology: Complexity in Context. , 2003, , 147-157.		1
156	Commercial Yeast Strains Expressing Polygalacturonase and Glucanase Unravel the Cell Walls of Chardonnay Grape Pomace. Biology, 2022, 11, 664.	1.3	1
157	Bio-prospecting across the plant kingdom for industrially relevant cell wall polysaccharides using novel glycan microarrays. Journal of Biotechnology, 2008, 136, S199.	1.9	0
158	Analysis of Plant Cell Walls Using High-Throughput Profiling Techniques with Multivariate Methods. Methods in Molecular Biology, 2020, 2149, 327-337.	0.4	0