
Tianjun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8169364/publications.pdf Version: 2024-02-01

ΤΙΔΝΙΙΙΝ ΥΠ

#	Article	IF	CITATIONS
1	Amplified circularly polarized luminescence enabled by photon upconversion in spin-coating cellulose matrix. Chinese Chemical Letters, 2023, 34, 107649.	9.0	7
2	An enzyme cascade fluorescence-based assay for the quantification of phenylalanine in serum. Analyst, The, 2022, 147, 671-676.	3.5	2
3	Coupling Redâ€ŧoâ€blue Upconversion Organic Microcrystals with Cd _{0.5} Zn _{0.5} S for Efficient and Durable Photocatalytic Hydrogen Production. Chemistry - an Asian Journal, 2022, 17, .	3.3	1
4	Enhancing photon upconversion with thermally activated sensitization and singlet energy collection. Journal of Materials Chemistry C, 2022, 10, 8596-8601.	5.5	3
5	Water developable non-chemically amplified photoresist for electron beam and extreme ultraviolet lithography. Journal of Micro-nanopatterning, Materials, and Metrology, 2022, 21, .	0.8	2
6	A novel dual-tone molecular glass resist based on adamantane derivatives for electron beam lithography. Journal of Materials Chemistry C, 2022, 10, 9858-9866.	5.5	13
7	Efficient acceptorless dehydrogenation of hydrogen-rich N-heterocycles photocatalyzed by Ni(OH) ₂ @CdSe/CdS quantum dots. Catalysis Science and Technology, 2021, 11, 3810-3817.	4.1	5
8	Funneling and Enhancing Upconversion Emission by Light-Harvesting Molecular Wires. Journal of Physical Chemistry Letters, 2021, 12, 9525-9530.	4.6	8
9	Crystallization and near-infrared emission from host–guest based supramolecular polymers. New Journal of Chemistry, 2021, 45, 9761-9765.	2.8	2
10	Thermally Activated Upconversion with Metal-Free Sensitizers Enabling Exceptional Anti-Stokes Shift and Anti-counterfeiting Application. ACS Applied Materials & Interfaces, 2021, 13, 57481-57488.	8.0	22
11	Triplet–Triplet Annihilation Upconversion for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2019, 25, 16270-16276.	3.3	36
12	Thermally Activated Delayed Fluorescence via Triplet Fusion. Journal of Physical Chemistry Letters, 2019, 10, 6239-6245.	4.6	24
13	Molecular Glass Resists Based on 9,9′-Spirobifluorene Derivatives: Pendant Effect and Comprehensive Evaluation in Extreme Ultraviolet Lithography. ACS Applied Polymer Materials, 2019, 1, 526-534.	4.4	16
14	Ultrasensitive reversible chromophore reaction of BODIPY functions as high ratio double turn on probe. Nature Communications, 2018, 9, 362.	12.8	48
15	Molecular–Supramolecular Light Harvesting for Photochemical Energy Conversion: Making Every Photon Count. ACS Energy Letters, 2017, 2, 357-363.	17.4	47
16	Lightâ€Harvesting Organic Nanocrystals Capable of Photon Upconversion. ChemSusChem, 2017, 10, 4610-4615.	6.8	29
17	A colorimetric and ratiometric fluorescence sensor for sensitive detection of fluoride ions in water and toothpaste. RSC Advances, 2016, 6, 49158-49163.	3.6	27
18	Pd–Porphyrin Oligomers Sensitized for Greenâ€ŧoâ€Blue Photon Upconversion: The More the Better?. Chemistry - A European Journal, 2016, 22, 8654-8662.	3.3	26

Tianjun Yu

#	Article	IF	CITATIONS
19	Dendrimers-merging biomimics and photoenergy conversion. Science China Chemistry, 2015, 58, 390-399.	8.2	8
20	Highly Emissive Nanoparticles Based on AIE-Active Molecule and PAMAM Dendritic "Molecular Glue― Langmuir, 2015, 31, 4386-4393.	3.5	20
21	Artificial photosynthesis dendrimers integrating light-harvesting, electron delivery and hydrogen production. Journal of Materials Chemistry A, 2015, 3, 12965-12971.	10.3	27
22	Intramolecular triplet–triplet energy transfer enhanced triplet–triplet annihilation upconversion with a short-lived triplet state platinum(<scp>ii</scp>) terpyridyl acetylide photosensitizer. RSC Advances, 2015, 5, 70640-70648.	3.6	22
23	Efficient photochemical production of hydrogen in aqueous solution by simply incorporating a water-insoluble hydrogenase mimic into a hydrogel. Journal of Materials Chemistry A, 2014, 2, 20500-20505.	10.3	15
24	An [Feâ€Fe]â€Hydrogenase Mimic Immobilized on MCMâ€41 for the Photochemical Production of Hydrogen in Pure Water. Chinese Journal of Chemistry, 2014, 32, 479-484.	4.9	10
25	A "breathing―dendritic molecule—conformational fluctuation induced by external stimuli. Polymer Chemistry, 2014, 5, 5978-5984.	3.9	23
26	Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizer—[Fe-Fe] hydrogenase mimic dyad. Photochemical and Photobiological Sciences, 2014, 13, 1590-1597.	2.9	24
27	Advances in Photofunctional Dendrimers for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2014, 5, 2340-2350.	4.6	56
28	Exceptional Dendrimerâ€Based Mimics of Diiron Hydrogenase for the Photochemical Production of Hydrogen. Angewandte Chemie - International Edition, 2013, 52, 5631-5635.	13.8	93
29	Dendrimer-Encapsulated Pt Nanoparticles: An Artificial Enzyme for Hydrogen Production. Journal of Physical Chemistry C, 2012, 116, 10516-10521.	3.1	30