
Soo-won Heo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8169284/publications.pdf

Version: 2024-02-01

SOO-WON HEO

#	Article	IF	CITATIONS
1	Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561, 516-521.	13.7	743
2	An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 2463-2469.	2.7	59
3	Conjugated Polymer Consisting of Quinacridone and Benzothiadiazole as Donor Materials for Organic Photovoltaics: Coplanar Property of Polymer Backbone. Macromolecules, 2012, 45, 7815-7822.	2.2	58
4	Haptacyclic Carbazole-Based Ladder-Type Nonfullerene Acceptor with Side-Chain Optimization for Efficient Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2017, 9, 42035-42042.	4.0	43
5	Patternable solution process for fabrication of flexible polymer solar cells using PDMS. Solar Energy Materials and Solar Cells, 2011, 95, 3564-3572.	3.0	38
6	Synthesis and characterization of 2,1,3-benzothiadiazole-thieno[3,2-b]thiophene-based charge transferred-type polymers for photovoltaic application. Solar Energy Materials and Solar Cells, 2009, 93, 1932-1938.	3.0	35
7	Enhanced performance in inverted polymer solar cells via solution process: Morphology controlling of PEDOT:PSS as anode buffer layer by adding surfactants. Organic Electronics, 2013, 14, 1629-1635.	1.4	29
8	Enhanced performance in polymer light emitting diodes using an indium–zinc–tin oxide transparent anode by the controlling of oxygen partial pressure at room temperature. Journal of Materials Chemistry C, 2013, 1, 7009.	2.7	26
9	Enhanced stability in polymer solar cells by controlling the electrode work function via modification of indium tin oxide. Solar Energy Materials and Solar Cells, 2013, 115, 123-128.	3.0	26
10	Enhanced carrier mobility and photon-harvesting property by introducing Au nano-particles in bulk heterojunction photovoltaic cells. Organic Electronics, 2013, 14, 1931-1938.	1.4	25
11	Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole. Journal of Industrial and Engineering Chemistry, 2013, 19, 421-426.	2.9	25
12	Cumulative gain in organic solar cells by using multiple optical nanopatterns. Journal of Materials Chemistry A, 2017, 5, 10347-10354.	5.2	24
13	An effect on the side chain position of D–Ĩ€â€"A-type conjugated polymers with sp2-hybridized orbitals for organic photovoltaics. Polymer Chemistry, 2013, 4, 3225.	1.9	22
14	Effects of Inserting Thiophene as a π-Bridge on the Properties of Naphthalene Diimide- <i>alt</i> -Fused Thiophene Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 44070-44078.	4.0	20
15	Synthesis of random copolymers based on 3-hexylthiophene and quinoxaline derivative: Influence between the intramolecular charge transfer (ICT) effect and π-conjugation length for their photovoltaic properties. Synthetic Metals, 2011, 161, 1-6.	2.1	18
16	Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics. Small Methods, 2020, 4, 1900762.	4.6	18
17	Fabrication of OPVs by introducing a conductivity-enhanced hybrid buffer layer. Solar Energy Materials and Solar Cells, 2012, 101, 295-302.	3.0	17
18	Effect of replacing proton with alkoxy side chain for donor acceptor type organic photovoltaics. Solar Energy Materials and Solar Cells, 2014, 120, 303-309.	3.0	17

SOO-WON HEO

#	Article	IF	CITATIONS
19	Enhanced photocurrent generation by high molecular weight random copolymer consisting of benzothiadiazole and quinoxaline as donor materials. Solar Energy Materials and Solar Cells, 2014, 120, 94-101.	3.0	16
20	Porphyrin-Containing Polymer as a Superior Blue Light-Absorbing Additive To Afford High- <i>J</i> _{sc} Ternary Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 1156-1162.	4.0	16
21	Influence of alkanediol series as processing additives in photo-active layer on the power conversion efficiency of polymer solar cells. Solar Energy Materials and Solar Cells, 2013, 114, 82-88.	3.0	15
22	Improved Performance of P3HT:PCBM-Based Solar Cells Using Nematic Liquid Crystals as a Processing Additive under Low Processing Temperature conditions. Macromolecular Materials and Engineering, 2014, 299, 353-360.	1.7	12
23	Synthesis and Characterization of a Fluorene–Quinoxaline Copolymer for Light-Emitting Applications. Journal of Nanoscience and Nanotechnology, 2010, 10, 99-105.	0.9	9
24	Study on the ClO4 doped PEDOT-PEG in organic solvent using a hole injection layer for PLEDs. Journal of Industrial and Engineering Chemistry, 2011, 17, 651-656.	2.9	9
25	Self-organization polymer consisting of quinacridone and quaterthiophene units: Coplanar structure between benzene and thiophene linkage. Solar Energy Materials and Solar Cells, 2013, 117, 285-292.	3.0	9
26	Enhanced performance in bulk heterojunction solar cells by introducing naphthalene derivatives as processing additives. Solar Energy Materials and Solar Cells, 2013, 111, 16-22.	3.0	9
27	Ultra-Flexible Organic Photovoltaics with Nanograting Patterns Based on CYTOP/Ag Nanowires Substrate. Nanomaterials, 2020, 10, 2185.	1.9	9
28	Ultra-Flexible Organic Solar Cell Based on Indium-Zinc-Tin Oxide Transparent Electrode for Power Source of Wearable Devices. Nanomaterials, 2021, 11, 2633.	1.9	9
29	Study on the wet processable antimony tin oxide (ATO) transparent electrode for PLEDs. Journal of Industrial and Engineering Chemistry, 2012, 18, 312-316.	2.9	8
30	A facile method for enhancing photovoltaic performance of low-band-gap D–A conjugated polymer for OPVs by controlling the chemical structure. Journal of Industrial and Engineering Chemistry, 2015, 26, 173-181.	2.9	8
31	Study on the antimony tin oxide as a hole injection layer for polymer light emitting diodes. Thin Solid Films, 2012, 520, 4068-4073.	0.8	7
32	Enhanced performance in bulk heterojunction solar cells with alkylidene fluorene donor by introducing modified PFN-OH/Al bilayer cathode. RSC Advances, 2014, 4, 6776.	1.7	6
33	Improved performance of flexible polymer light emitting diodes with an indium-zinc-tin-oxide transparent anode by controlling the thermal treatment temperature. Journal of Industrial and Engineering Chemistry, 2017, 53, 68-76.	2.9	5
34	Vacuum-Free Fabrication Strategies for Nanostructure-Embedded Ultrathin Substrate in Flexible Polymer Solar Cells. Energies, 2020, 13, 5375.	1.6	5
35	A study on the real-time decomposition monitoring of a metal organic precursor for metal organic chemical vapor deposition processes. Measurement Science and Technology, 2009, 20, 025701.	1.4	4
36	Ultra-Flexible Organic Photovoltaics with Low-Temperature Deposited IZTO on a Cyclic Polymer Substrate Having Excellent Mechanical Properties. ACS Applied Materials & Interfaces, 2021, 13, 51289-51296.	4.0	4

SOO-WON HEO

#	Article	IF	CITATIONS
37	Patternable brush painting process for fabrication of flexible polymer solar cells. Solar Energy Materials and Solar Cells, 2011, , .	3.0	2
38	Size-Dependent Photovoltaic Performance of CdSe Supraquantum Dot/Polymer Hybrid Solar Cells: "Goldilocks Problem―Resolved by Tuning the Band Alignment Using Surface Ligands. Journal of Physical Chemistry C, 2020, 124, 25775-25783.	1.5	2
39	Introducing a Quasirandom Pattern in OPVs for Balancing the Transverse Magnetic and Electric Modes of Incident Light. ACS Applied Energy Materials, 2021, 4, 14232-14239.	2.5	2
40	Pâ€57: Study on the Wet Processable Antimony Tin Oxide (Transparent Conducting Oxide, TCO) Using Anode for PLED Device Instead of ITO. Digest of Technical Papers SID International Symposium, 2009, 40, 1306-1308.	0.1	0
41	Ultraflexible Organic Photovoltaics: Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics (Small Methods 3/2020). Small Methods, 2020, 4, 2070013.	4.6	Ο