Limin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8169244/publications.pdf

Version: 2024-02-01

411340 620720 26 3,156 20 26 h-index citations g-index papers 27 27 27 4407 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	15.6	138
2	Hysteresis Induced by Incomplete Cationic Redox in Liâ€Rich 3dâ€Transitionâ€Metal Layered Oxides Cathodes. Advanced Science, 2022, 9, .	5.6	7
3	Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2003054.	10.2	61
4	High-capacity and small-polarization aluminum organic batteries based on sustainable quinone-based cathodes with Al3+ insertion. Cell Reports Physical Science, 2021, 2, 100354.	2.8	32
5	Hierarchical Ti ₃ C ₂ T _{<i>x</i>} MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO ₂ Batteries. ACS Nano, 2021, 15, 8407-8417.	7.3	54
6	Microstructural Investigation into Na-Ion Storage Behaviors of Cellulose-Based Hard Carbons for Na-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 14559-14566.	1.5	15
7	Sulfur-linked carbonyl polymer as a robust organic cathode for rapid and durable aluminum batteries. Journal of Energy Chemistry, 2021, 63, 320-327.	7.1	22
8	Two-Phase Transition Induced Amorphous Metal Phosphides Enabling Rapid, Reversible Alkali-Metal Ion Storage. ACS Nano, 2021, 15, 13486-13494.	7.3	23
9	Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 18091-18102.	6.6	96
10	Multifunctionalities of Graphene for Exploiting a Facile Conversion Reaction Route of Perovskite CoSnO ₃ for Highly Reversible Na Ion Storage. Journal of Physical Chemistry Letters, 2020, 11, 7988-7995.	2.1	5
11	Recent Advances in the Rational Design and Synthesis of Twoâ€Dimensional Materials for Multivalent Ion Batteries. ChemSusChem, 2020, 13, 1071-1092.	3.6	25
12	Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy, 2019, 65, 103902.	8.2	49
13	Magnesium storage performance and mechanism of CuS cathode. Nano Energy, 2018, 47, 210-216.	8.2	183
14	Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1701415.	10.2	436
15	Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy, 2018, 54, 360-366.	8.2	82
16	Amorphous CuSnO ₃ nanospheres anchored on interconnected carbon networks for use as novel anode materials for high-performance sodium ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 2756-2762.	3.0	20
17	All Carbon Dual Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35978-35983.	4.0	93
18	Interlayerâ€5pacingâ€Regulated VOPO ₄ Nanosheets with Fast Kinetics for Highâ€Capacity and Durable Rechargeable Magnesium Batteries. Advanced Materials, 2018, 30, e1801984.	11.1	171

#	Article	IF	CITATION
19	Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Materials Horizons, 2017, 4, 268-273.	6.4	105
20	Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy, 2017, 35, 281-289.	8.2	247
21	Urchinâ€Like CoSe ₂ as a Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Advanced Functional Materials, 2016, 26, 6728-6735.	7.8	471
22	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 12822-12826.	7.2	394
23	Cobaltâ€Doped FeS ₂ Nanospheres with Complete Solid Solubility as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 13014-13018.	1.6	268
24	CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2015, 651, 382-388.	2.8	75
25	Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Research, 2014, 7, 774-781.	5.8	74
26	Synthesis and Characterization of Ultrathin Tinâ€Doped Zinc Oxide Nanowires. European Journal of Inorganic Chemistry, 2012, 2012, 4268-4272.	1.0	10