Guohui Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/81691/publications.pdf Version: 2024-02-01

Спонті Мам

#	Article	IF	CITATIONS
1	Identification of 2-Benzylidene-tetralone Derivatives as Highly Potent and Reversible Firefly Luciferase Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 304-311.	1.3	1
2	Discovery and Structural Optimization of Toddacoumalone Derivatives as Novel PDE4 Inhibitors for the Topical Treatment of Psoriasis. Journal of Medicinal Chemistry, 2022, 65, 4238-4254.	2.9	10
3	FOXO3 mutation predicting gefitinib-induced hepatotoxicity in NSCLC patients through regulation of autophagy. Acta Pharmaceutica Sinica B, 2022, 12, 3639-3649.	5.7	4
4	RNA and RNA derivatives: light and dark sides in cancer immunotherapy. Antioxidants and Redox Signaling, 2022, , .	2.5	0
5	RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut, 2021, 70, 1698-1712.	6.1	63
6	Tumorâ€associated macrophages in immunotherapy. FEBS Journal, 2021, 288, 6174-6186.	2.2	48
7	Lossâ€ofâ€Function Genetic Screening Identifies Aldolase A as an Essential Driver for Liver Cancer Cell Growth Under Hypoxia. Hepatology, 2021, 74, 1461-1479.	3.6	53
8	Measurement of Circulating Tumor Cells to Track Hepatocellular Carcinoma Progression After Liver Transplantation-Case Report. Frontiers in Oncology, 2021, 11, 760765.	1.3	2
9	Mechanism of aberrant long non-coding RNA expression in an adriamycin-resistant liver cancer cell strain. Digestive and Liver Disease, 2020, 52, 582-587.	0.4	0
10	Design and Discovery of Natural Cyclopeptide Skeleton Based Programmed Death Ligand 1 Inhibitor as Immune Modulator for Cancer Therapy. Journal of Medicinal Chemistry, 2020, 63, 11286-11301.	2.9	12
11	<scp>RNA</scp> m ⁶ A methylation regulates sorafenib resistance in liver cancer through <scp>FOXO</scp> 3â€mediated autophagy. EMBO Journal, 2020, 39, e103181.	3.5	271
12	New Strategy for COVID-19: An Evolutionary Role for RGD Motif in SARS-CoV-2 and Potential Inhibitors for Virus Infection. Frontiers in Pharmacology, 2020, 11, 912.	1.6	36
13	Methyladenosine Modification in RNAs: Classification and Roles in Gastrointestinal Cancers. Frontiers in Oncology, 2020, 10, 586789.	1.3	14
14	Degradation of intracellular TGF-β1 by PROTACs efficiently reverses M2 macrophage induced malignant pathological events. Chemical Communications, 2020, 56, 2881-2884.	2.2	13
15	Nodal Facilitates Differentiation of Fibroblasts to Cancer-Associated Fibroblasts that Support Tumor Growth in Melanoma and Colorectal Cancer. Cells, 2019, 8, 538.	1.8	30
16	RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Molecular Cancer, 2019, 18, 46.	7.9	416
17	N6-Methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharmaceutica Sinica B, 2018, 8, 833-843.	5.7	58
18	AP-1 confers resistance to anti-cancer therapy by activating XIAP. Oncotarget, 2018, 9, 14124-14137.	0.8	12

GUOHUI WAN

#	Article	IF	CITATIONS
19	eEF-2 kinase is a critical regulator of Warburg effect through controlling PP2A-A synthesis. Oncogene, 2016, 35, 6293-6308.	2.6	36
20	Amplification of USP13 drives ovarian cancer metabolism. Nature Communications, 2016, 7, 13525.	5.8	99
21	TP53 loss creates therapeutic vulnerability inÂcolorectal cancer. Nature, 2015, 520, 697-701.	13.7	192
22	The RNA-Binding Protein DDX1 Promotes Primary MicroRNA Maturation and Inhibits Ovarian Tumor Progression. Cell Reports, 2014, 8, 1447-1460.	2.9	86
23	Noncoding RNAs in DNA Repair and Genome Integrity. Antioxidants and Redox Signaling, 2014, 20, 655-677.	2.5	44
24	miR-137 regulates epithelial-mesenchymal transition in gastrointestinal stromal tumor. Tumor Biology, 2014, 35, 9131-9138.	0.8	32
25	miRâ€⊋03 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Molecular Oncology, 2014, 8, 83-92.	2.1	156
26	Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cellular Signalling, 2013, 25, 1086-1095.	1.7	180
27	A novel non-coding RNA IncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO Journal, 2013, 32, 2833-2847.	3.5	120
28	Protein phosphatase 1 inhibits p53 signaling by dephosphorylating and stabilizing Mdmx. Cellular Signalling, 2013, 25, 796-804.	1.7	15
29	DNA-Damage-Induced Nuclear Export of Precursor MicroRNAs Is Regulated by the ATM-AKT Pathway. Cell Reports, 2013, 3, 2100-2112.	2.9	58
30	Crosstalk between the DNA damage response pathway and microRNAs. Cellular and Molecular Life Sciences, 2012, 69, 2895-2906.	2.4	26
31	The ATM Kinase Induces MicroRNA Biogenesis in the DNA Damage Response. Molecular Cell, 2011, 41, 371-383.	4.5	208
32	miRNA response to DNA damage. Trends in Biochemical Sciences, 2011, 36, 478-484.	3.7	154
33	A study of somatolactin actions by ectopic expression in transgenic zebrafish larvae. Journal of Molecular Endocrinology, 2010, 45, 301-315.	1.1	33
34	Oncogenic Wip1 Phosphatase Is Inhibited by miR-16 in the DNA Damage Signaling Pathway. Cancer Research, 2010, 70, 7176-7186.	0.4	159
35	Differential regulation of zebrafish metallothionein-II (zMT-II) gene transcription in ZFL and SJD cell lines by metal ions. Aquatic Toxicology, 2009, 91, 33-43.	1.9	16