
Claudio Paniconi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical dispersion of solute transport in an integrated surface–subsurface hydrological model. Advances in Water Resources, 2021, 158, 104060.	3.8	5
2	Hydrologic Impacts of Surface Elevation and Spatial Resolution in Statistical Correction Approaches: Case Study of Flumendosa Basin, Italy. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	1.9	4
3	Machine Learning vs. Physics-Based Modeling for Real-Time Irrigation Management. Frontiers in Water, 2020, 2, .	2.3	24
4	Sobol Global Sensitivity Analysis of a Coupled Surface/Subsurface Water Flow and Reactive Solute Transfer Model on a Real Hillslope. Water (Switzerland), 2020, 12, 121.	2.7	13
5	Fill and Spill Hillslope Runoff Representation With a Richards Equationâ€Based Model. Water Resources Research, 2019, 55, 8445-8462.	4.2	28
6	Investigating Parameter Transferability across Models and Events for a Semiarid Mediterranean Catchment. Water (Switzerland), 2019, 11, 2261.	2.7	2
7	Global evaluation and sensitivity analysis of a physically based flow and reactive transport model on a laboratory experiment. Environmental Modelling and Software, 2019, 113, 73-83.	4.5	21
8	Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment. Hydrology and Earth System Sciences, 2018, 22, 4125-4143.	4.9	25
9	Examination of the seepage face boundary condition in subsurface and coupled surface/subsurface hydrological models. Water Resources Research, 2017, 53, 1799-1819.	4.2	17
10	The integrated hydrologic model intercomparison project, <scp>IHâ€MIP2</scp> : A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 2017, 53, 867-890.	4.2	113
11	The role of hydrogeological setting in two Canadian peatlands investigated through 2D steady-state groundwater flow modelling. Hydrological Sciences Journal, 2017, 62, 2541-2557.	2.6	11
12	Numerical Tests of the Lookup Table Method in Solving Richards' Equation for Infiltration and Drainage in Heterogeneous Soils. Hydrology, 2017, 4, 33.	3.0	4
13	Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling. Hydrology and Earth System Sciences, 2017, 21, 1439-1454.	4.9	13
14	Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory. Hydrology and Earth System Sciences, 2016, 20, 4061-4078.	4.9	18
15	Mass-conservative reconstruction of Galerkin velocity fields for transport simulations. Advances in Water Resources, 2016, 94, 470-485.	3.8	13
16	Effect of surface and subsurface heterogeneity on the hydrological response of a grassed buffer zone. Journal of Hydrology, 2016, 542, 637-647.	5.4	11
17	Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Science of the Total Environment, 2016, 543, 981-996.	8.0	51
18	Chemical and botanical indicators of groundwater inflow to Sphagnum -dominated peatlands. Ecological Indicators, 2016, 64, 142-151.	6.3	11

#	Article	IF	CITATIONS
19	Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy. Science of the Total Environment, 2016, 543, 862-876.	8.0	32
20	Physically based modeling in catchment hydrology at 50: Survey and outlook. Water Resources Research, 2015, 51, 7090-7129.	4.2	193
21	Catchmentâ€scale Richards equationâ€based modeling of evapotranspiration via boundary condition switching and root water uptake schemes. Water Resources Research, 2015, 51, 5756-5771.	4.2	26
22	Control of coupling mass balance error in a processâ€based numerical model of surfaceâ€subsurface flow interaction. Water Resources Research, 2015, 51, 5698-5716.	4.2	4
23	Impact of sensor failure on the observability of flow dynamics at the Biosphere 2 LEO hillslopes. Advances in Water Resources, 2015, 86, 327-339.	3.8	21
24	An assessment of recharge estimates from stream and well data and from a coupled surface-water/groundwater model for the des Anglais catchment, Quebec (Canada). Hydrogeology Journal, 2015, 23, 1731-1743.	2.1	10
25	Aquifer–peatland connectivity in southern Quebec (Canada). Hydrological Processes, 2015, 29, 2600-2612.	2.6	19
26	A simulation/optimization study to assess seawater intrusion management strategies for the Gaza Strip coastal aquifer (Palestine). Hydrogeology Journal, 2015, 23, 249-264.	2.1	24
27	Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project. Science of the Total Environment, 2015, 503-504, 3-9.	8.0	161
28	Incipient subsurface heterogeneity and its effect on overland flow generation – insight from a modeling study of the first experiment at the Biosphere 2 Landscape Evolution Observatory. Hydrology and Earth System Sciences, 2014, 18, 1873-1883.	4.9	29
29	Empirical modelling to estimate surface soil moisture at field scale in Sardinia, Italy: Comparison between optical and SAR data. , 2014, , .		0
30	Simulation of Distributed Base Flow Contributions to Streamflow Using a Hillslope-Based Catchment Model Coupled to a Regional-Scale Groundwater Model. Journal of Hydrologic Engineering - ASCE, 2014, 19, 907-917.	1.9	10
31	A watershed-scale study of climate change impacts on groundwater recharge (Annapolis Valley, Nova) Tj ETQq1	1 0,78431 2.6	4 rgBT /Ove
32	Algorithm for Delineating and Extracting Hillslopes and Hillslope Width Functions from Gridded Elevation Data. Journal of Hydrologic Engineering - ASCE, 2014, 19, 366-374.	1.9	35
33	Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations. Journal of Hydrology, 2014, 514, 192-201.	5.4	30
34	An integrated modelling framework of catchmentâ€scale ecohydrological processes: 2. The role of water subsidy by overland flow on vegetation dynamics in a semiâ€arid catchment. Ecohydrology, 2014, 7, 815-827.	2.4	20
35	An integrated modelling framework of catchmentâ€scale ecohydrological processes: 1. Model description and tests over an energyâ€limited watershed. Ecohydrology, 2014, 7, 427-439.	2.4	68
36	Surfaceâ€subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 2014, 50, 1531-1549.	4.2	222

#	ARTICLE	IF	CITATIONS
37	A field and modeling study of nonlinear storage-discharge dynamics for an Alpine headwater catchment. Water Resources Research, 2014, 50, 806-822.	4.2	44
38	Comparison of two modeling approaches for groundwater–surface water interactions. Hydrological Processes, 2013, 27, 2258-2270.	2.6	29
39	Climate Variability and Durum Wheat Adaptation Using the AquaCrop Model in Southern Sardinia. Procedia Environmental Sciences, 2013, 19, 830-835.	1.4	24

Implementation of a hydrological model of groundwater recharge for the Chiba catchment (Cap-Bon,) Tj ETQq0 0 0 rgBT /Overlock 10 Ti

40		U	1
41	Implementation of a Root Water Extraction Module in CATHY: Comparison of Four Empirical Root-density Distribution Models. Procedia Environmental Sciences, 2013, 19, 57-66.	1.4	4
42	The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resources Research, 2013, 49, 5099-5116.	4.2	114
43	Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions. Water Resources Research, 2012, 48, .	4.2	62
44	Analysis of coupling errors in a physically-based integrated surface water–groundwater model. Advances in Water Resources, 2012, 49, 86-96.	3.8	14
45	A lowâ€dimensional hillslopeâ€based catchment model for layered groundwater flow. Hydrological Processes, 2012, 26, 2814-2826.	2.6	24
46	Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surfaceâ€subsurface interactions and comparison with a land surface model. Water Resources Research, 2011, 47, .	4.2	85
47	Numerical investigation of leakage in sloping aquifers. Journal of Hydrology, 2011, 409, 49-61.	5.4	16
48	Impact of grid resolution on the integrated and distributed response of a coupled surface–subsurface hydrological model for the des Anglais catchment, Quebec. Hydrological Processes, 2011, 25, 1853-1865.	2.6	50
49	Coupling water flow and solute transport into a physically-based surface–subsurface hydrological model. Advances in Water Resources, 2011, 34, 128-136.	3.8	70
50	A comparison of two physics-based numerical models for simulating surface water–groundwater interactions. Advances in Water Resources, 2010, 33, 456-467.	3.8	108
51	Surfaceâ€subsurface flow modeling with pathâ€based runoff routing, boundary conditionâ€based coupling, and assimilation of multisource observation data. Water Resources Research, 2010, 46, .	4.2	289
52	Comparison of Data Assimilation Techniques for a Coupled Model of Surface and Subsurface Flow. Vadose Zone Journal, 2009, 8, 837-845.	2.2	26
53	Ensemble Kalman filter data assimilation for a processâ€based catchment scale model of surface and subsurface flow. Water Resources Research, 2009, 45, .	4.2	85
54	Conjunctive Use of a Hydrological Model and a Multicriteria Decision Support System for a Case Study on the Caia Catchment, Portugal. Journal of Hydrologic Engineering - ASCE, 2009, 14, 141-152.	1.9	14

#	Article	IF	CITATIONS
55	A modeling study of heterogeneity and surface water-groundwater interactions in the Thomas Brook catchment, Annapolis Valley (Nova Scotia, Canada). Hydrology and Earth System Sciences, 2009, 13, 1583-1596.	4.9	32
56	Low-dimensional modeling of hillslope subsurface flow: Relationship between rainfall, recharge, and unsaturated storage dynamics. Water Resources Research, 2007, 43, .	4.2	45
57	Assessment of alternative land management practices using hydrological simulation and a decision support tool: Arborea agricultural region, Sardinia. Hydrology and Earth System Sciences, 2007, 11, 1811-1823.	4.9	18
58	Assessment of adaptive and heuristic time stepping for variably saturated flow. International Journal for Numerical Methods in Fluids, 2007, 53, 1173-1193.	1.6	31
59	Numerical assessment of a dynamical relaxation data assimilation scheme for a catchment hydrological model. Hydrological Processes, 2006, 20, 549-563.	2.6	12
60	Storage-dependent drainable porosity for complex hillslopes. Water Resources Research, 2005, 41, .	4.2	47
61	Time step and stability control for a coupled model of surface and subsurface flow. Developments in Water Science, 2004, 55, 1391-1402.	0.1	13
62	The hillslope-storage Boussinesq model for non-constant bedrock slope. Journal of Hydrology, 2004, 291, 160-173.	5.4	64
63	Travel time distributions of subsurface flow along complex hillslopes with exponential width functions. Developments in Water Science, 2004, 55, 1465-1477.	0.1	0
64	Assessment of initial solution estimates and adaptive vs. heuristic time stepping for variably saturated flow. Developments in Water Science, 2004, , 545-556.	0.1	0
65	Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resources Research, 2003, 39, .	4.2	233
66	Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model. Water Resources Research, 2003, 39, .	4.2	94
67	Newtonian nudging for a Richards equation-based distributed hydrological model. Advances in Water Resources, 2003, 26, 161-178.	3.8	60
68	The influence of a confining layer on saltwater intrusion under surface recharge and groundwater extraction conditions. Developments in Water Science, 2002, 47, 493-500.	0.1	4
69	Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone. Environmental Geology, 2002, 42, 162-177.	1.2	43
70	Modeling and Analysis of Seawater Intrusion in the Coastal Aquifer of Eastern Cap-Bon, Tunisia. Transport in Porous Media, 2001, 43, 3-28.	2.6	88
71	A modelling study of seawater intrusion in the Korba coastal plain, Tunisia. Physics and Chemistry of the Earth, 2001, 26, 345-351.	0.3	64
72	Agricultural Impacts on Groundwater: Processes, Modelling and Decision Support. , 2001, , 35-75.		1

5

#	Article	IF	CITATIONS
73	Integrating GIS and Data Visualization Tools for Distributed Hydrologic Modeling. Transactions in GIS, 1999, 3, 97-118.	2.3	18
74	Mapping basin scale variable source areas from multitemporal remotely sensed observations of soil moisture behavior. Water Resources Research, 1998, 34, 3235-3244.	4.2	56
75	Comment on "A combined Laplace transform and streamline upwind approach for nonideal transport of solutes in porous media―by Linlin Xu and Mark L. Brusseau. Water Resources Research, 1997, 33, 367-368.	4.2	5
76	Local Contributions to Infiltration Excess Runoff for a Conceptual Catchment Scale Model. Water Resources Research, 1996, 32, 2003-2012.	4.2	17
77	Comparison of solution approaches for the two-domain model of nonequilibrium transport in porous media. Advances in Water Resources, 1996, 19, 241-253.	3.8	15
78	Newton-Type Linearization and Line Search Methods for Unsaturated Flow Models. , 1996, , 155-172.		0
79	Picard and Newton linearization for the coupled model for saltwater intrusion in aquifers. Advances in Water Resources, 1995, 18, 159-170.	3.8	53
80	Modeling Variably Saturated Flow Problems Using Newton-Type Linearization Methods. , 1995, , 45-64.		2
81	Finite Element Modeling of Saltwater Intrusion Problems with an Application to an Italian Aquifer. , 1995, , 65-84.		4
82	A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resources Research, 1994, 30, 3357-3374.	4.2	279
83	Quasi-Newton Methods for Richards' Equation. Water Science and Technology Library, 1994, , 99-106.	0.3	2
84	A detailed model for simulation of catchment scale subsurface hydrologic processes. Water Resources Research, 1993, 29, 1601-1620.	4.2	101
85	Evaluation of a distributed catchment scale water balance model. Water Resources Research, 1993, 29, 1805-1817.	4.2	59
86	Numerical evaluation of iterative and noniterative methods for the solution of the nonlinear Richards equation. Water Resources Research, 1991, 27, 1147-1163.	4.2	146
87	Model Calibration Based on Random Environmental Fluctuations. Journal of Environmental Engineering, ASCE, 1988, 114, 1136-1145.	1.4	9