
Cristina Padro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Steam reforming of glycerol: Hydrogen production optimization. International Journal of Hydrogen Energy, 2015, 40, 6097-6106.	7.1	69
2	Comparative Study ofn-Hexane Aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO2Catalysts: Clean and Sulfur-Containing Feeds. Journal of Catalysis, 1998, 179, 43-55.	6.2	43
3	Increased Sulfur Tolerance of Pt/KL Catalysts Prepared by Vapor-Phase Impregnation and Containing a Tm Promoter. Journal of Catalysis, 2000, 191, 116-127.	6.2	37
4	Acidic V-MCM-41 catalysts for the liquid-phase ketalization of glycerol with acetone. Microporous and Mesoporous Materials, 2019, 273, 219-225.	4.4	31
5	Stability and regeneration of supported PtSn catalysts for propane dehydrogenation. Studies in Surface Science and Catalysis, 1997, 111, 191-198.	1.5	29
6	Synthesis of bioadditives of fuels from biodiesel-derived glycerol by esterification with acetic acid on solid catalysts. Environmental Technology (United Kingdom), 2018, 39, 1955-1966.	2.2	16
7	Activation of Mo and V oxides supported on ZSM-5 zeolite catalysts followed by in situ XAS and XRD and their uses in oxydehydration of glycerol. Molecular Catalysis, 2020, 481, 110158.	2.0	13
8	A combined experimental and computational study of the esterification reaction of glycerol with acetic acid. Journal of Molecular Modeling, 2014, 20, 2167.	1.8	11
9	Study of catalyst deactivation during 1,3-butanediol dehydration to produce butadiene. Microporous and Mesoporous Materials, 2021, 320, 111066.	4.4	9
10	Kinetic analysis of the conversion of aqueous erythritol solution on Ir/ReOx/TiO2 in a batch slurry reactor. Applied Catalysis A: General, 2022, 643, 118691.	4.3	7
11	Effect of Support Properties on Selective Butanediols Production from Erythritol using Ir/ReO _x Catalysts. ChemCatChem, 2021, 13, 3889-3906.	3.7	6
12	Esterification of Succinic Acid Using Sulfated Zirconia Supported on SBAâ€15. Chemical Engineering and Technology, 2021, 44, 1185-1194.	1.5	5
13	Surface Praseodymium Species on MgO: Characterization and Activity for Oxidative Coupling of Methane. Journal of Chemical Technology and Biotechnology, 1997, 70, 141-146.	3.2	3
14	BUTENEDIOLS PRODUCTION FROM ERYTHRITOL ON Rh PROMOTED CATALYST. Latin American Applied Research, 2020, 50, 89-94.	0.4	2
15	Effect of the Na addition to PrOx/MgO on the Reactivity and Selectivity in the Oxidative Coupling of Methane Studies in Surface Science and Catalysis, 1998, 119, 337-342.	1.5	1
16	Kinetic modeling of liquid phase catalytic alkylation of guaiacol with cyclohexene. Chemical Engineering Journal Advances, 2021, 7, 100112.	5.2	1