Jean-Charles Buffet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168717/publications.pdf

Version: 2024-02-01

159358 197535 2,678 87 30 49 citations g-index h-index papers 88 88 88 2241 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>C₃</i> â€Symmetric Lanthanide Tris(alkoxide) Complexes Formed by Preferential Complexation and Their Stereoselective Polymerization of ⟨i⟩rac⟨/i⟩â€Lactide. Angewandte Chemie - International Edition, 2008, 47, 6033-6036.	7.2	150
2	Synthesis of Flame-Retardant Polypropylene/LDH-Borate Nanocomposites. Macromolecules, 2013, 46, 6145-6150.	2.2	146
3	Initiators for the stereoselective ring-opening polymerization of meso-lactide. Polymer Chemistry, 2011, 2, 2758.	1.9	133
4	Synthesis and characterisation of aqueous miscible organic-layered double hydroxides. Journal of Materials Chemistry A, 2014, 2, 15102-15110.	5.2	114
5	Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst. Nature Communications, 2017, 8, 591.	5.8	110
6	Chiral Indium Alkoxide Complexes as Initiators for the Stereoselective Ring-Opening Polymerization of rac-Lactide. Inorganic Chemistry, 2010, 49, 419-426.	1.9	97
7	High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10, 2398.	5.8	94
8	Stereoselective Polymerization of <i>meso</i> -Lactide: Syndiotactic Polylactide by Heteroselective Initiators Based on Trivalent Metals. Macromolecules, 2010, 43, 10201-10203.	2.2	81
9	Group 4 metal initiators for the controlled stereoselective polymerization of lactide monomers. Chemical Communications, 2011, 47, 4796.	2.2	67
10	Tuneable ultra high specific surface area Mg/Al-CO ₃ layered double hydroxides. Dalton Transactions, 2015, 44, 16392-16398.	1.6	63
11	Molecular nitrogen promotes catalytic hydrodeoxygenation. Nature Catalysis, 2019, 2, 1078-1087.	16.1	63
12	Small molecule activation by frustrated Lewis pairs. Dalton Transactions, 2013, 42, 2431-2437.	1.6	60
13	Core–shell SiO ₂ @LDHs with tuneable size, composition and morphology. Chemical Communications, 2015, 51, 3462-3465.	2.2	60
14	Ligand Recognition Processes in the Formation of Homochiral <i>C</i> ₃ â€Symmetric LnL ₃ Complexes of a Chiral Alkoxide. Chemistry - A European Journal, 2009, 15, 8241-8250.	1.7	59
15	Alkaline earth metal amide complexes containing a cyclen-derived (NNNN) macrocyclic ligand: synthesis, structure, and ring-opening polymerization activity towards lactide monomers. New Journal of Chemistry, 2011, 35, 2253.	1.4	55
16	Controlled stereoselective polymerization of lactide monomers by group 4 metal initiators that contain an (OSSO)-type tetradentate bis(phenolate) ligand. Polymer Chemistry, 2011, 2, 2378.	1.9	55
17	Highly Tunable Catalyst Supports for Single-Site Ethylene Polymerization. Chemistry of Materials, 2015, 27, 1495-1501.	3.2	54
18	Synthesis, Characterization, and Lactide Polymerization Activity of Group 4 Metal Complexes Containing Two Bis(phenolate) Ligands. Inorganic Chemistry, 2012, 51, 5764-5770.	1.9	47

#	Article	IF	CITATIONS
19	Switching the Lactide Polymerization Activity of a Cerium Complex by Redox Reactions. ChemCatChem, 2013, 5, 1088-1091.	1.8	47
20	Scandium alkyl and amide complexes containing a cyclen-derived (NNNN) macrocyclic ligand: synthesis, structure and ring-opening polymerization activity toward lactide monomers. Dalton Transactions, 2011, 40, 7748.	1.6	46
21	Alkaline earth metal complexes of a chiral polyether as initiator for the ring-opening polymerization of lactide. Dalton Transactions, 2012, 41, 12612.	1.6	46
22	Synthesis and characterisation of layered double hydroxide dispersions in organic solvents. RSC Advances, 2014, 4, 51676-51682.	1.7	45
23	Layered double hydroxide nanosheets via solvothermal delamination. Journal of Energy Chemistry, 2019, 35, 88-94.	7.1	45
24	Core–shell zeolite@aqueous miscible organic-layered double hydroxides. Chemical Science, 2016, 7, 1457-1461.	3.7	41
25	Hydrogen cleavage by solid-phase frustrated Lewis pairs. Chemical Communications, 2016, 52, 10478-10481.	2.2	40
26	Chiral Group 4 Cyclopentadienyl Complexes and Their Use in Polymerization of Lactide Monomers. Organometallics, 2014, 33, 3891-3903.	1.1	38
27	Ethylene polymerisation using solid catalysts based on layered double hydroxides. Polymer Chemistry, 2015, 6, 2493-2503.	1.9	36
28	Group 1 and 2 cyclic (alkyl)(amino)carbene complexes. Dalton Transactions, 2015, 44, 12985-12989.	1.6	35
29	Synthesis and Characterization of Solid Polymethylaluminoxane: A Bifunctional Activator and Support for Slurry-Phase Ethylene Polymerization. Chemistry of Materials, 2016, 28, 7444-7450.	3.2	34
30	Synthesis and characterisation of permethylindenyl zirconium complexes and their use in ethylene polymerisation. RSC Advances, 2015, 5, 87456-87464.	1.7	33
31	Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation. Chemical Communications, 2016, 52, 4076-4079.	2.2	28
32	Groupâ€3 Metal Initiators with an [OSSO]â€Type Bis(phenolate) Ligand for the Stereoselective Polymerization of Lactide Monomers. Chemistry - an Asian Journal, 2012, 7, 1320-1330.	1.7	27
33	Titanium and Zirconium Permethylpentalene Complexes, Pn*MCp ^R X, as Ethylene Polymerization Catalysts. Organometallics, 2016, 35, 2664-2674.	1.1	27
34	Silica@layered double hydroxide core–shell hybrid materials. Dalton Transactions, 2018, 47, 143-149.	1.6	27
35	Aspect Ratio Control of Layered Double Hydroxide Nanosheets and Their Application for High Oxygen Barrier Coating in Flexible Food Packaging. ACS Applied Materials & Interfaces, 2020, 12, 10973-10982.	4.0	25
36	Controlling the Surface Hydroxyl Concentration by Thermal Treatment of Layered Double Hydroxides. Inorganic Chemistry, 2017, 56, 7842-7850.	1.9	22

#	Article	IF	Citations
37	Polymethylaluminoxane supported zirconocene catalysts for polymerisation of ethylene. Journal of Organometallic Chemistry, 2016, 822, 85-90.	0.8	20
38	Tungsten imido catalysts for selective ethylene dimerisation. Chemical Communications, 2016, 52, 2850-2853.	2.2	19
39	Group 4 permethylindenyl constrained geometry complexes for ethylene polymerisation catalysis. Catalysis Science and Technology, 2018, 8, 5454-5461.	2.1	19
40	Synthesis, characterisation, and polymerisation studies ofÂhexamethylindenyl zirconocenes and hafnocenes. Journal of Organometallic Chemistry, 2015, 792, 55-65.	0.8	18
41	Aqueous immiscible layered double hydroxides: synthesis, characterisation and molecular dynamics simulation. Chemical Communications, 2018, 54, 4394-4397.	2.2	18
42	Slurry-Phase Ethylene Polymerization Using Pentafluorophenyl- and Pentafluorophenoxy-Modified Solid Polymethylaluminoxanes. Organometallics, 2018, 37, 156-164.	1.1	18
43	Early Transition Metal Permethylpentalene Complexes for the Polymerization of Ethylene. Organometallics, 2014, 33, 3775-3785.	1.1	17
44	Group 4 permethylindenyl complexes for slurry-phase polymerisation of ethylene. Polymer Chemistry, 2019, 10, 1386-1398.	1.9	17
45	Bifunctional acid–base mesoporous silica@aqueous miscible organic-layered double hydroxides. RSC Advances, 2019, 9, 3749-3754.	1.7	17
46	Water adsorbancy of high surface area layered double hydroxides (AMO-LDHs). RSC Advances, 2018, 8, 34650-34655.	1.7	16
47	Popcorn-shaped polyethylene synthesised using highly active supported permethylindenyl metallocene catalyst systems. Chemical Communications, 2018, 54, 10970-10973.	2.2	16
48	Surface modification of aqueous miscible organic layered double hydroxides (AMO-LDHs). Dalton Transactions, 2020, 49, 8498-8503.	1.6	15
49	Rapid, efficient phase pure synthesis of Ca ₂ AlNO ₃ layered double hydroxide. Journal of Materials Chemistry A, 2016, 4, 500-504.	5.2	14
50	Group 4 permethylindenyl complexes for the polymerisation of <scp> </scp> -, <scp>d</scp> - and <i>rac</i> -lactide monomers. Dalton Transactions, 2019, 48, 2510-2520.	1.6	14
51	Synthesis, characterisation and slurry phase ethylene polymerisation of rac-(PhBBI*)ZrCl2 immobilised on modified layered double hydroxides. Molecular Catalysis, 2019, 468, 139-147.	1.0	14
52	A facile synthesis of layered double hydroxide based core@shell hybrid materials. New Journal of Chemistry, 2020, 44, 10095-10101.	1.4	14
53	Metallocene Polyethylene Wax Synthesis. Macromolecules, 2020, 53, 5847-5856.	2.2	13
54	Correlations of acidity-basicity of solvent treated layered double hydroxides/oxides and their CO ₂ capture performance. Dalton Transactions, 2020, 49, 9306-9311.	1.6	13

#	Article	IF	CITATIONS
55	Non-toxic layered double hydroxide nanoplatelet dispersions for gas barrier coatings on flexible packaging. Materials Advances, 2021, 2, 2626-2635.	2.6	12
56	Synthesis of dense porous layered double hydroxides from struvite. Green Chemistry, 2021, 23, 1616-1620.	4.6	12
57	Supported bis(peralkylindenyl)metallocene catalysts for slurry phase ethylene polymerisation. Polyhedron, 2016, 116, 216-222.	1.0	11
58	Aqueous miscible organic solvent treated NiTi layered double hydroxide De-NOx photocatalysts. Chemical Engineering Journal, 2022, 429, 132361.	6.6	11
59	Ethylene Polymerization Using Zirconocenes Supported on Pentafluorophenyl-Modified Solid Polymethylaluminoxane. Macromolecules, 2020, 53, 929-935.	2.2	10
60	Aqueous miscible organic layered double hydroxides as catalyst precursors for biodiesel synthesis. Green Chemistry, 2020, 22, 3117-3121.	4.6	10
61	Supported permethylindenyl titanium catalysts for the synthesis of disentangled ultra-high molecular weight polyethylene (<i>dis</i> UHMWPE). Chemical Communications, 2021, 57, 8600-8603.	2.2	10
62	Zirconocene alkoxides and aryloxides for the polymerization of L- and rac-lactide. Journal of Organometallic Chemistry, 2016, 801, 87-95.	0.8	9
63	Dendritic silica@aqueous miscible organic-layered double hydroxide hybrids. Dalton Transactions, 2018, 47, 16413-16417.	1.6	9
64	Physicochemical surface-structure studies of highly active zirconocene polymerisation catalysts on solid polymethylaluminoxane activating supports. Materials Chemistry Frontiers, 2020, 4, 3226-3233.	3.2	8
65	Constrained geometry scandium permethylindenyl complexes for the ring-opening polymerisation of land rac-lactide. Dalton Transactions, 2019, 48, 16099-16107.	1.6	7
66	Group 4 constrained geometry complexes for olefin (co)polymerisation. Molecular Catalysis, 2020, 486, 110872.	1.0	7
67	Controlling the activity of an immobilised molecular catalyst by Lewis acidity tuning of the support. Journal of Catalysis, 2021, 402, 94-100.	3.1	7
68	Tuning Polyethylene Molecular Weight Distributions Using Catalyst Support Composition. Macromolecules, 2022, 55, 3408-3414.	2.2	7
69	Synthesis and characterisation of the ethylene bridged permethylindenyl cerium complex [(EBI*)CeI(THF)]. Dalton Transactions, 2012, 41, 11267.	1.6	6
70	Zirconium arene triple-decker sandwich complexes: synthesis, electronic structure and bonding. Chemical Communications, 2017, 53, 12048-12051.	2.2	6
71	Aqueous immiscible layered double hydroxides – AlM-LDHs. Materials Chemistry Frontiers, 2018, 2, 2277-2285.	3.2	6
72	Aged layered double hydroxide nanosheet–polyvinyl alcohol dispersions for enhanced gas barrier coating performance. Materials Horizons, 2021, 8, 2823-2833.	6.4	6

#	Article	IF	CITATIONS
73	Synthesis of ultra-high molecular weight poly(ethylene)- <i>co</i> -(1-hexene) copolymers through high-throughput catalyst screening. RSC Advances, 2021, 11, 5644-5650.	1.7	6
74	Ni ₂ Mn-layered double oxide electrodes in organic electrolyte based supercapacitors. RSC Advances, 2021, 11, 27267-27275.	1.7	6
75	Selective ethylene oligomerisation using supported tungsten mono-imido catalysts. Inorganic Chemistry Frontiers, 2017, 4, 1048-1060.	3.0	5
76	Synthesis and characterization of permethylpentalene titanium aryloxide and alkoxide complexes. Polyhedron, 2019, 157, 146-151.	1.0	5
77	Slurry-phase ethylene polymerisation using group 4 ansa-bridged permethylindenyl complexes supported on polymethylaluminoxane. Molecular Catalysis, 2020, 484, 110735.	1.0	4
78	Ring-opening polymerisation of l- and rac-lactide using group 4 permethylpentalene aryloxides and alkoxides. Dalton Transactions, 2021, 50, 4805-4818.	1.6	4
79	Polymethylaluminoxane organic frameworks (sMAOF) – highly active supports for slurry phase ethylene polymerisation. Catalysis Science and Technology, 2021, 11, 5472-5483.	2.1	4
80	A restatement of the natural science evidence base regarding the source, spread and control of <i>Campylobacter</i> species causing human disease. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	4
81	Synthesis, characterisation and properties of bis(permethylindenyl) iron and tin complexes. Journal of Organometallic Chemistry, 2014, 774, 48-56.	0.8	3
82	CO ₂ activation by permethylpentalene amido zirconium complexes. Dalton Transactions, 2021, 50, 4494-4498.	1.6	3
83	Synthesis of zirconocene complexes and their use in slurry-phase polymerisation of ethylene. RSC Advances, 2021, 11, 11529-11535.	1.7	3
84	Synthesis, characterisation and redox properties of anti-bimetallic permethylpentalene complexes. Dalton Transactions, 2019, 48, 4263-4273.	1.6	2
85	Synthesis, characterisation and ethylene polymerisation performance of silyl bridged peralkylated bis(indenyl) zirconocenes. Molecular Catalysis, 2020, 498, 111275.	1.0	2
86	<scp>I</scp> - and <i>rac</i> -lactide polymerisation using scandium and aluminium permethylindenyl complexes. Polymer Chemistry, 2020, 11, 6308-6318.	1.9	2
87	Sterically rigid bismuth pincer complexes; observation of the growing polymer chain in polar monomer polymerisation. Dalton Transactions, 2022, 51, 3060-3074.	1.6	2