List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168610/publications.pdf

Version: 2024-02-01

		1478505	1474206	
13	84	6	9	
papers	citations	h-index	g-index	
13	13	13	65	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Analysis and Design of a Uniform Magnetic Field Coil With a Magnetic Shield Based on an Improved Analytical Model. IEEE Transactions on Industrial Electronics, 2022, 69, 3068-3077.	7.9	16
2	Effects of Varying Ionic Mobility on Calculated DC Ionized Field with the Presence of Atmospheric Particles by Upstream-BEM. , 2021 , , .		0
3	Hybrid Method of FEM and Divergence Theorem to Analyze Ion Flow Field Including Dielectric Film's Accumulation Charges. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	3
4	Calculation of the Ionized Field of $\hat{A}\pm 800~kV$ High Voltage DC Power Lines With the Presence of Charged Atmospheric Particles. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	6
5	Analysis of the direct current ionised field near the field mill probe with a hatâ€shaped electrode. IET Science, Measurement and Technology, 2017, 11, 111-117.	1.6	2
6	Impact of fine particles on the direct current electric field of the conductor due to corona discharge. Journal of Electrostatics, 2017, 88, 106-110.	1.9	7
7	A measurement method for atmospheric ion mobilities based on cylindrical electrodes in direct current corona discharge. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12, 16-23.	1.4	3
8	Measurement of ground-level charge density under a HVDC conductor with presence of fine particles. , $2016, , .$		1
9	Analysis of dielectric particles charging and motion in the direct current ionized field. CSEE Journal of Power and Energy Systems, 2016, 2, 88-94.	1.1	12
10	Upstream Boundary Element Method for Calculating the Ionized Field of the High Voltage Direct Current Conductor. IEEE Transactions on Power Delivery, 2016, , 1-1.	4.3	3
11	Impact of Space Charges From Direct Current Corona Discharge on the Measurement by the Rotating Electric-Field Meter. IEEE Transactions on Power Delivery, 2016, 31, 1517-1523.	4.3	15
12	Measurement method of charge densities at ground level under highâ€voltage direct current conductor. IET Science, Measurement and Technology, 2015, 9, 973-978.	1.6	15
13	Measurement of corona-generated space charge density under DC test wire. , 2015, , .		1