Selvaraj Nagarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816859/publications.pdf

Version: 2024-02-01

215 papers

3,975 citations

30 h-index 243625 44 g-index

220 all docs 220 docs citations

times ranked

220

2358 citing authors

#	Article	IF	CITATIONS
1	Grating assembly in periodic crystal aggregates of aliphatic polyesters with potential iridescence photonics. Journal of Polymer Research, 2022, 29, 1.	2.4	2
2	Unique Periodic Rings Composed of Fractal-Growth Dendritic Branching in Poly(p-dioxanone). Polymers, 2022, 14, 805.	4.5	2
3	Morphology Modulation in Self-Assembly of Chiral 2-Hydroxy-2-Phenylacetic Acids in Polymeric Diluents. Crystals, 2022, 12, 807.	2.2	1
4	Periodic Hierarchical Structures in Poly(<i>p</i> dioxanone) Modulated with Miscible Diluents: Top-Surface and Interior Analyses. Industrial & Engineering Chemistry Research, 2022, 61, 11046-11055.	3.7	2
5	Sophisticated dual-discontinuity periodic bands of poly(nonamethylene terephthalate). CrystEngComm, 2021, 23, 892-903.	2.6	9
6	Stereocomplexation of enantiomeric star-shaped poly(lactide)s with a chromophore core. CrystEngComm, 2021, 23, 2122-2132.	2.6	5
7	Star-Shaped Polylactide Dipyridamole Conjugated to 5-Fluorouracil and 4-Piperidinopiperidine Nanocarriers for Bioimaging and Dual Drug Delivery in Cancer Cells. ACS Applied Polymer Materials, 2021, 3, 737-756.	4.4	10
8	Periodic Assembly of Polyethylene Spherulites Reâ€Investigated by Breakthrough Interior Dissection. Macromolecular Rapid Communications, 2021, 42, e2000708.	3.9	13
9	Synchrotron Xâ€Ray Analysis and Morphology Evidence for Stereoâ€Assemblies of Periodic Aggregates in Poly(3â€hydroxybutyrate) with Unusual Photonic Iridescence. Macromolecular Rapid Communications, 2021, 42, e2100281.	3.9	16
10	Microstructural Periodic Arrays in Poly(Butylene Adipate) Featured with Photonic Crystal Aggregates. Macromolecular Rapid Communications, 2021, 42, e2100202.	3.9	11
11	Periodic crystal assembly of Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid): From surface to interior microstructure. Polymer, 2021, 228, 123866.	3.8	9
12	Unique Optical Periodicity Assembly of Discrete Dendritic Lamellae and Pyramidal Single Crystals in Poly($\hat{l}\mu$ -caprolactone). ACS Applied Materials & Enterfaces, 2021, 13, 41200-41208.	8.0	17
13	Lamellar Assembly Mechanism on Dendritic Ringâ€Banded Spherulites of Poly(<i>ε</i> i> aprolactone). Macromolecular Rapid Communications, 2021, 42, e2100359.	3.9	10
14	Sluggish growth of poly($\hat{l}\mu$ -caprolactone) leads to petal-shaped aggregates packed with thick-stack lamellar bundles. CrystEngComm, 2021, 23, 5321-5330.	2.6	10
15	Epicycloid extinction-band assembly in Poly(decamethylene terephthalate) confined in thin films and crystallized at high temperatures. Polymer, 2021, 212, 123256.	3.8	12
16	In-Situ Growth of Nucleus Geometry to Dual Types of Periodically Ringed Assemblies in Poly(nonamethylene terephthalate). Crystals, 2021, 11, 1338.	2.2	2
17	Crystal aggregation into periodically grating-banded assemblies in phthalic acid modulated by molten poly(ethylene oxide). CrystEngComm, 2020, 22, 467-477.	2.6	8
18	Morphological analyses evidencing corrugate-grating lamellae assembly in banded spherulites of Poly(ethylene adipate). Polymer, 2020, 188, 122141.	3.8	15

#	Article	IF	Citations
19	Novel reinforcement behavior in nanofilled natural rubber (NR) / butadiene-acrylonitrile rubber (NBR) blends: Filling-polymer network and supernanosphere. Polymer, 2020, 186, 122005.	3.8	29
20	Three-dimensional periodic architecture in Poly(l̂ μ -caprolactone) crystallized in bulk aggregates. Polymer, 2020, 210, 123059.	3.8	13
21	Periodic Fractal-Growth Branching to Nano-Structured Grating Aggregation in Phthalic Acid. Scientific Reports, 2020, 10, 4062.	3.3	18
22	Unusual Ringed/Dendritic Sector Faces in Poly(butylene succinate) Crystallized with Isomeric Polymer. Industrial & Engineering Chemistry Research, 2020, 59, 7485-7494.	3.7	7
23	Unusual Radiating-Stripe Morphology in Nonequimolar Mixtures of Poly(<scp>l</scp> -lactic acid) with Poly(<scp>d</scp> -lactic acid). Macromolecules, 2020, 53, 2157-2168.	4.8	17
24	Explosive Fibonacci-sequence growth into unusual sector-face morphology in poly(I-lactic acid) crystallized with polymeric diluents. Scientific Reports, 2020, 10, 10811.	3.3	11
25	Dendritic polymer spherulites: birefringence correlating with lamellae assembly and origins of superimposed ring bands. Journal of Polymer Research, 2020, 27, 1.	2.4	16
26	Probing the interior lamellar periodicity and nano-assembly of polymer spherulites via combinatory etching methodology. Polymer, 2019, 176, 179-187.	3.8	2
27	Surface-relief and interior lamellar assembly in Janus-face spherulites of Poly(butylene succinate) crystallized with Poly(ethylene oxide). Polymer, 2019, 176, 168-178.	3.8	8
28	Impact of uniaxial tensile fatigue on the evolution of microscopic and mesoscopic structure of carbon black filled natural rubber. Royal Society Open Science, 2019, 6, 181883.	2.4	5
29	Systematic probing into periodic lamellar assembly via induced cracks in crystallized polyesters. Polymer, 2019, 166, 88-97.	3.8	13
30	Relationship between twisting phenomenon and structural discontinuity of stacked lamellae in the spherulite of poly(ethylene adipate) as studied by the synchrotron X-ray microbeam technique. Polymer Journal, 2019, 51, 131-141.	2.7	19
31	Three-dimensional interior analyses on periodically banded spherulites of poly(dodecamethylene) Tj ETQq $1\ 1\ 0.784$	4314 rgBT 2.6	/ <mark>O</mark> verlock
32	Effects of Amphiphilic Chitosan on Stereocomplexation and Properties of Poly(lactic acid) Nano-biocomposite. Scientific Reports, 2018, 8, 4351.	3.3	46
33	Crystallization in arylate polyesters to periodically ringed assembly. Polymer Crystallization, 2018, 1, e10018.	0.8	5
34	Influence of Branched Polyester Chains on the Emission Behavior of Dipyridamole Molecule and Its Biosensing Ability. ACS Omega, 2018, 3, 15530-15537.	3.5	4
35	Anatomy into Interior Lamellar Assembly in Nuclei-Dependent Diversified Morphologies of Poly(<scp>I</scp> -lactic acid). Macromolecules, 2018, 51, 7722-7733.	4.8	26
36	Biomimetically Structured Lamellae Assembly in Periodic Banding of Poly(ethylene adipate) Crystals. Macromolecules, 2018, 51, 3845-3854.	4.8	26

#	Article	IF	CITATIONS
37	Study on phase transition behavior and lamellar orientation of uniaxially stretched poly(ÊŸ-lactide) / cellulose nanocrystal-graft-poly(d-lactide) blend. Polymer, 2018, 150, 184-193.	3.8	8
38	Lamellae Assembly in Dendritic Spherulites of Poly(l-lactic Acid) Crystallized with Poly(p-Vinyl) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 702
39	Green and facile surface modification of cellulose nanocrystal as the route to produce poly(lactic) Tj ETQq1 1 0.7	784314 rgl 10.2	3T / Overlock
40	Crystallization Behavior of Crystalline–Amorphous and Crystalline–Crystalline Block Copolymers Containing Poly(I -lactide). , 2018, , 93-122.		2
41	Periodic extinction bands composed of all flatâ€on lamellae in poly(dodecamethylene terephthalate) thin films crystallized at high temperatures. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 601-611.	2.1	14
42	Interior Dissection on Domain-Dependent Birefringence Types of Poly(3-hydroxybutyrate) Spherulites in Blends. Macromolecules, 2017, 50, 283-295.	4.8	11
43	Structured growth from sheaf-like nuclei to highly asymmetric morphology in poly(nonamethylene) Tj ETQq1 1 C).784314 r 3.6	gBT_/Overlock
44	Enhanced Toughness and Thermal Stability of Cellulose Nanocrystal Iridescent Films by Alkali Treatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 8951-8958.	6.7	85
45	Nano-assembly of intertwining lamellae of opposite bending senses in poly(ethylene oxide) co-crystallizing with poly(p-vinyl phenol). Journal of Polymer Research, 2017, 24, 1.	2.4	5
46	Dendritic lamellar assembly in solution-cast poly(l-lactic acid) spherulites. CrystEngComm, 2017, 19, 6002-6007.	2.6	10
47	Multishell Oblate Spheroid Growth in Poly(trimethylene terephthalate) Banded Spherulites. Macromolecules, 2017, 50, 5898-5904.	4.8	28
48	Star-Shaped Poly(<scp>l</scp> -lactide) with a Dipyridamole Core: Role of Polymer Chain Packing on Induced Circular Dichroism and Photophysical Properties of Dipyridamole. Macromolecules, 2017, 50, 5261-5270.	4.8	13
49	Interior Lamellar Assembly and Optical Birefringence in Poly(trimethylene terephthalate) Spherulites: Mechanisms from Past to Present. Crystals, 2017, 7, 56.	2.2	26
50	Atomic-Force Microscopy Analyses on Dislocation in Extinction Bands of Poly(dodecamethylene) Tj ETQq0 0 0 rg	BT_/Qverlo	ock ₆ 10 Tf 50 2
51	Asymmetric Growth of Co-Crystallized Nano- and Micrometer-Sized Lamellae to Janus-Faced Spherulites in Poly(<scp>I</scp> -lactic acid) with Amorphous Poly(methyl methacrylate). Crystal Growth and Design, 2017, 17, 5034-5037.	3.0	15
52	Cracks in Polymer Spherulites: Phenomenological Mechanisms in Correlation with Ring Bands. Polymers, 2016, 8, 329.	4.5	16
53	Three types of banded structures in highly birefringent poly(trimethylene terephthalate) spherulites. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1207-1216.	2.1	28
54	Hierarchically Diminishing Chirality Effects on Lamellar Assembly in Spherulites Comprising Chiral Polymers. Macromolecules, 2016, 49, 2698-2708.	4.8	41

#	Article	IF	Citations
55	Iridescent graphene/cellulose nanocrystal film with water response and highly electrical conductivity. RSC Advances, 2016, 6, 93673-93679.	3.6	24
56	Novel approaches to study the crystal assembly in banded spherulites of poly(trimethylene) Tj ETQq0 0 0 rgBT /	Overlock 1	.0 т <u>f</u> 50 702 т
57	Shapes and Origins of Cracks and Correlations with Lamellae Assembly in Poly(Lâ€lactic acid). Macromolecular Symposia, 2016, 369, 87-91.	0.7	3
58	Synthesis and characterization of cellulose nanocrystal-graft-poly(d-lactide) and its nanocomposite with poly(l-lactide). Polymer, 2016, 103, 365-375.	3.8	55
59	Structural evolution of poly(l-lactide) block upon heating of the glassy ABA triblock copolymers containing poly(l-lactide) A blocks. Polymer, 2016, 105, 422-430.	3.8	19
60	Analysis of crystal assembly in banded spherulites of phthalic acid upon solvent evaporation. CrystEngComm, 2016, 18, 977-985.	2.6	27
61	Effect of silica particle size in cellulose membrane for desalination process. AIP Conference Proceedings, 2015, , .	0.4	3
62	Effects of top confinement and diluents on morphology in crystallization of poly(<scp> </scp> â€lactic) Tj ETQq 53, 1160-1170.	0 0 0 rgBT 2.1	/Overlock 10 17
63	Effects of Glycineâ€Based Ionic Liquid on Spherulite Morphology of Poly(<scp>l</scp> â€Lactide). Macromolecular Chemistry and Physics, 2015, 216, 1291-1301.	2.2	10
64	Banded Crystalline Spherulites in Polymers and Organic Compounds: Interior Lamellar Structures Correlating with Top-Surface Topology. Journal of Advanced Chemical Engineering, 2015, 5, .	0.1	4
65	Spacer length controlled highly thermo reversible polyurethane–urea based on polystyrene: synthesis and crystallization studies. Polymers for Advanced Technologies, 2015, 26, 160-166.	3.2	3
66	Origins of periodic bands in polymer spherulites. European Polymer Journal, 2015, 71, 27-60.	5.4	81
67	Transitional Ring Bands Constructed by Discrete Positive- and Negative-Birefringence Lamellae Packed in Poly(1,6-hexamethylene adipate) Spherulites. Macromolecules, 2015, 48, 7953-7967.	4.8	19
68	Cold Crystallization of PDMS and PLLA in Poly(<scp>I</scp> -lactide- <i>b</i> -dimethylsiloxane- <i>b</i> - <scp>I</scp> -lactide) Triblock Copolymer and Their Effect on Nanostructure Morphology. Macromolecules, 2015, 48, 5367-5377.	4.8	29
69	Intertwining lamellar assembly in porous spherulites composed of two ring-banded poly(ethylene) Tj ETQq $1\ 1\ 0$.784314 rg	gBT_/Overlock
70	Highly Solventâ€Resistant Polystyrene Based on Uniform Tetraamide Units. Advances in Polymer Technology, 2015, 34, .	1.7	1
71	Chemical and Morphological Alterations Effected by Methylamine Reactions on Polyesters. Macromolecular Chemistry and Physics, 2014, 215, 1297-1305.	2.2	10
72	Oppositely Synchronized Lamellar Bending in Poly(<scp>l</scp> â€lactic acid) Versus Poly(<scp>d</scp> â€lactic acid) Blended with Poly(1,4â€butylene adipate). Macromolecular Chemistry and Physics, 2014, 215, 978-987.	2.2	8

#	Article	IF	Citations
73	Microscopy and microbeam X-ray analyses in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with amorphous poly(vinyl acetate). Polymer, 2014, 55, 6906-6914.	3.8	19
74	Composite banded core and non-banded shell transition patterns in stereocomplexed poly(lactide) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 50
75	Dendritic Morphology Composed of Stacked Single Crystals in Poly(ethylene succinate) Melt-Crystallized with Poly(<i>p</i> -vinyl phenol). Crystal Growth and Design, 2014, 14, 576-584.	3.0	21
76	Diversification of spherulite patterns in poly(ethylene succinate) crystallized with strongly interacting poly(4-vinyl phenol). Journal of Polymer Research, 2014, 21, 1.	2.4	10
77	Coexisting Straight, Radial, and Banded Lamellae on the Six Corners of Hexagonâ€Shaped Spherulites in Poly(<scp>l</scp> â€Lactide). Macromolecular Chemistry and Physics, 2014, 215, 1838-1847.	2.2	9
78	Distorted ring-banded spherulites in poly(l-lactic acid)/poly(l\$\hat{l}\$\mu-caprolactone) blends. RSC Advances, 2014, 4, 49006-49015.	3.6	6
79	Multifunctional star-shaped polylactic acid implants for use in angioplasty. Journal of Materials Chemistry B, 2014, 2, 6549-6559.	5.8	9
80	A novel hexagonal crystal with a hexagonal star-shaped central core in poly(I-lactide) (PLLA) induced by an ionic liquid. CrystEngComm, 2014, 16, 4945-4949.	2.6	15
81	Interior Lamellar Assembly in Correlation to Top-Surface Banding in Crystallized Poly(ethylene) Tj ETQq1 1 0.784	1314 rgBT	/Overlock 10
82	Phase-Separation Induced Lamellar Re-Assembly and Spherulite Optical Birefringence Reversion. Macromolecules, 2014, 47, 5624-5632.	4.8	15
83	Anisotropic Nucleation and Janus-Faced Crystals of Poly(<scp>l</scp> -lactic acid) Interacting with an Amorphous Diluent. Industrial & Engineering Chemistry Research, 2014, 53, 9772-9780.	3.7	12
84	Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy. Colloid and Polymer Science, 2013, 291, 817-826.	2.1	25
85	Perpendicularly oriented lamellae in poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) blended with an amorphous polymer: ultra-thin to thick films. Physical Chemistry Chemical Physics, 2013, 15, 2495.	2.8	31
86	Polypropylene-blended organoclay nanocomposites $\hat{a} \in \hat{b}$ preparation, characterisation and properties. Journal of Experimental Nanoscience, 2013, 8, 480-492.	2.4	13
87	Unconventional Nonâ€birefringent or Birefringent Concentric Ringâ€Banded Spherulites in Poly(<scp>L</scp> â€lactic acid) Thin Films. Macromolecular Chemistry and Physics, 2013, 214, 673-680.	2.2	48
88	Microscopic Lamellar Assembly and Birefringence Patterns in Poly(1,6-hexamethylene adipate) Packed with or without Amorphous Poly(vinyl methyl ether). Industrial & Engineering Chemistry Research, 2013, 52, 3779-3786.	3.7	9
89	Configurational effects on the crystalline morphology and amorphous phase behavior in poly(3â€hydroxybutyrate) blends with tactic poly(methyl methacrylate). Journal of Applied Polymer Science, 2013, 129, 3113-3125.	2.6	2
90	Lamellar assembly and orientation-induced internal micro-voids by cross-sectional dissection of poly(ethylene oxide)/poly(L-lactic acid) blend. EXPRESS Polymer Letters, 2013, 7, 396-405.	2.1	14

#	Article	IF	CITATIONS
91	Mechanisms of Multiple Types of Lamellae and Spherulites in Poly(⟨scp⟩l⟨ scp⟩â€lactic acid) Interacting with Poly(4â€vinyl phenol). Macromolecular Chemistry and Physics, 2013, 214, 2345-2354.	2.2	17
92	Macromol. Chem. Phys. 21/2012. Macromolecular Chemistry and Physics, 2012, 213, 2320-2320.	2.2	0
93	Surface Nanopatterns of Two Types of Banded Spherulites in Poly(nonamethylene terephthalate) Thin Films. Journal of Physical Chemistry B, 2012, 116, 5071-5079.	2.6	21
94	Phase Separation and Lamellae Assembly below UCST in Poly(<scp>l</scp> -lactic acid)/Poly(1,4-butylene) Tj ETQc	0,00 rgB7	Γ Overlock 1
95	Phase behavior, polymorphism and spherulite morphology in Poly(1,4-butylene adipate) interacting with two structurally similar acrylic polymers. Polymer, 2012, 53, 3815-3826.	3.8	33
96	Optical Birefringence Patterns and Corresponding Lamellar Alteration Induced by Solvent Vapor on Poly(<scp> </scp> -lactic acid) Diluted with Poly(1,4-butylene adipate). Macromolecules, 2012, 45, 7313-7316.	4.8	16
97	Crystal Lamellae of Mutually Perpendicular Orientations by Dissecting onto Interiors of Poly(ethylene adipate) Spherulites Crystallized in Bulk Form. Macromolecules, 2012, 45, 1375-1383.	4.8	66
98	Fluorescence-detectable, star-shaped polylactic acid construction for implantation. European Polymer Journal, 2012, 48, 1357-1360.	5 . 4	9
99	Crystal Polymorphism and Spherulites in Poly(butylene adipate) Diluted with Strongly Versus Weakly Interacting Amorphous Polymers. Macromolecular Chemistry and Physics, 2012, 213, 2228-2237.	2.2	22
100	New Complex Crystals of Chiral Poly(<scp>L</scp> â€lactic acid) and Different Tactic Poly(methyl) Tj ETQq0 0 0 rş	gBT /Overlo 2.2	ogk 10 Tf 50
101	Crystallization of poly(3â€hydroxybutyrate) with stereocomplexed polylactide as biodegradable nucleation agent. Polymer Engineering and Science, 2012, 52, 1413-1419.	3.1	25
102	Crystallization kinetics and degradation of nanocomposites based on ternary blend of poly(<scp>L</scp> ″actic acid), poly(methyl methacrylate), and poly(ethylene oxide) with two different organoclays. Journal of Applied Polymer Science, 2012, 125, E444.	2.6	20
103	Thermal analysis on phase behavior of poly(l-lactic acid) interacting with aliphatic polyesters. Journal of Thermal Analysis and Calorimetry, 2012, 107, 745-756.	3.6	7
104	Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(l-lactic) Tj ETQq0 0 0 rgB	T /Overloc 2.1	k 10 Tf 50 22
105	Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene) Tj ETQq1 1 0.78	4314 rgBT 2.8	19yerlock 10
106	Cracks and Ring Bands of Poly(3-hydroxybutyrate) on Precrystallized Poly(<scp>l</scp> -lactic acid) Template. Industrial & Engineering Chemistry Research, 2011, 50, 4494-4503.	3.7	32
107	Phase-Separation-Induced Single-Crystal Morphology in Poly(<scp>l</scp> -lactic acid) Blended with Poly(1,4-butylene adipate) at Specific Composition. Journal of Physical Chemistry B, 2011, 115, 13127-13138.	2.6	29
108	Lamellar orientation and interlamellar cracks in co-crystallized poly(ethylene oxide)/poly(L-lactic) Tj ETQq0 0 0 rgE	ST /Overloc	

#	Article	IF	CITATIONS
109	Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly(l-lactic acid) with excess poly(d-lactic acid). Polymer, 2011, 52, 6080-6089.	3.8	70
110	Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric) Tj ETQq0 0 0 rgBT	Oyerlock :	10 <u>7</u> f 50 702
111	Phase behavior and crystal morphology in poly(ethylene succinate) biodegradably modified with tannin. Colloid and Polymer Science, 2011, 289, 1563-1578.	2.1	18
112	Nanocomposites based on vermiculite clay and ternary blend of poly(<scp>L</scp> â€lactic acid), poly(methyl methacrylate), and poly(ethylene oxide). Polymer Composites, 2011, 32, 1916-1926.	4.6	19
113	A Unique Metaâ€Form Structure in the Stereocomplex of Poly(<scp>D</scp> â€lactic acid) with Lowâ€Molecularâ€Weight Poly(<scp>L</scp> â€lactic acid). Macromolecular Chemistry and Physics, 2011, 212, 125-133.	2.2	30
114	Tannin Induced Single Crystalline Morphology in Poly(ethylene succinate). Macromolecular Chemistry and Physics, 2011, 212, 1155-1164.	2.2	36
115	Effects of Stereocomplex Nuclei or Spherulites on Crystalline Morphology and Crack Behavior of Poly(<scp>L</scp> ″actic acid). Macromolecular Chemistry and Physics, 2011, 212, 1663-1670.	2.2	23
116	Macromol. Chem. Phys. 11/2011. Macromolecular Chemistry and Physics, 2011, 212, n/a-n/a.	2.2	0
117	<i>In vitro</i> effect on cancer cells: Synthesis and preparation of polyurethane membranes for controlled delivery of curcumin. Journal of Biomedical Materials Research - Part A, 2011, 99A, 410-417.	4.0	16
118	Effects of crystallinity and molecular weight on crack behavior in crystalline poly(<scp>L</scp> ″actic acid). Journal of Applied Polymer Science, 2011, 122, 1976-1985.	2.6	28
119	Phase diagrams in blends of poly(3-hydroxybutyric acid) with various aliphatic polyesters. EXPRESS Polymer Letters, 2011, 5, 570-580.	2.1	11
120	Phase behavior and interactions in blends of poly[(butylene adipate)-co-poly(butylene terephthalate)] copolyester with poly(4-vinyl phenol). Colloid and Polymer Science, 2010, 288, 439-448.	2.1	15
121	Microscopic Fourier Transform Infrared Characterization on Two Types of Spherulite with Polymorphic Crystals in Poly(heptamethylene terephthalate). Macromolecular Rapid Communications, 2010, 31, 1343-1347.	3.9	12
122	Immiscibility–miscibility phase transformation in blends of poly(ethylene succinate) with poly(<scp>L</scp> ″actic acid)s of different molecular weights. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1135-1147.	2.1	16
123	Amorphous phase behavior and crystalline morphology in blends of poly(vinyl methyl ether) with isomeric polyesters: poly(hexamethylene adipate) and poly(É>-caprolactone). Polymer Journal, 2010, 42, 391-400.	2.7	15
124	Tacticity effects on glass transition and phase behavior in binary blends of poly(methyl methacrylate)s of three different configurations. Polymer Chemistry, 2010, 1, 198-202.	3.9	36
125	Atomic-Force and Optical Microscopy Investigations on Thin-Film Morphology of Spherulites in Melt-Crystallized Poly(ethylene adipate). Industrial & Engineering Chemistry Research, 2010, 49, 12084-12092.	3.7	41
126	Annular Multiâ€Shelled Spherulites in Interiors of Bulkâ€Form Poly(nonamethylene terephthalate). Macromolecular Rapid Communications, 2009, 30, 1911-1916.	3.9	26

#	Article	IF	CITATIONS
127	Stacked-lamellar structure of electrospun poly(heptamethylene terephthalate) nanofibers. Journal of Materials Science, 2009, 44, 2137-2142.	3.7	6
128	Morphological studies on single crystals and nanofibers of poly(heptamethylene terephthalate). Journal of Materials Science, 2009, 44, 4705-4709.	3.7	6
129	Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin. Polymer Bulletin, 2009, 62, 225-235.	3.3	30
130	Polymorphic and miscibility behavior in crystalline/crystalline blends of poly(pentamethylene) Tj ETQq0 0 0 rgBT/	Oyerlock 1	0 ₆ Tf 50 622
131	Thermodynamic and kinetic thermal analyses on dual crystal forms in polymorphic poly(heptamethylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1839-1851.	2.1	6
132	Kinetic Analysis on Effect of Poly(4-vinyl phenol) on Complex-Forming Blends of Poly(L-lactide) and Poly(D-lactide). Polymer Journal, 2009, 41, 374-382.	2.7	14
133	Effect of a Miscible Polymeric Diluent on Complex Formation between Isotactic and Syndiotactic Poly(methyl methacrylate). Industrial & Engineering Chemistry Research, 2009, 48, 3432-3440.	3.7	9
134	Immiscibility with upper-critical solution temperature phase diagrams for poly(methyl) Tj ETQq0 0 0 rgBT /Overloo	:k 10 Tf 50 2.1	462 Td (me
135	Growth regimes and spherulites in thin-film poly(É)-caprolactone) with amorphous polymers. Colloid and Polymer Science, 2008, 286, 917-926.	2.1	23
136	Immiscibility–miscibility phase transitions in blends of poly(<scp>L</scp> â€lactide) with poly(methyl) Tj ETQqC	0.0 rgBT /	Overlock 10 42
137	Analysis of multiple melting behavior of spherulites comprising ringâ€band shell/ringless core in polymorphic poly(butylene adipate). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 892-899.	2.1	19
138	Effects of chain configuration on UCST behavior in blends of poly(<scp>L</scp> â€lactic acid) with tactic poly(methyl methacrylate)s. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2355-2369.	2.1	23
139	Atomic Force Microscopy Characterization and Interpretation of Thinâ€Film Poly(butylene adipate) Spherulites with Ring Bands. Macromolecular Rapid Communications, 2008, 29, 1322-1328.	3.9	36
140	Enhancement of bioâ€compatibility via specific interactions in polyesters modified with a bioâ€resourceful macromolecular ester containing polyphenol groups. Journal of Biomedical Materials Research - Part A, 2008, 86A, 701-712.	4.0	28
141	Weak interaction, marginal miscibility, and ringâ€band spherulites in blends of poly(vinylidene fluoride) with polyesters. Journal of Applied Polymer Science, 2008, 107, 766-777.	2.6	6
142	Dual Types of Spherulites in Poly(octamethylene terephthalate) Confined in Thin-Film Growth. Langmuir, 2008, 24, 11880-11888.	3.5	39
143	Immiscibility, upper critical solution temperature, and miscibility in blends of poly(vinyl ether)s with polyacrylics: Effects of pendant groups. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1521-1534.	2.1	6
144	Comparison of glass transition and interpretation on miscibility in blends of amorphous poly(vinyl) Tj ETQq0 0 0 r Science, Part B: Polymer Physics, 2007, 45, 2899-2911.	gBT /Overl	ock 10 Tf 50 7

Science, Part B: Polymer Physics, 2007, 45, 2899-2911.

#	Article	IF	CITATIONS
145	Amorphous-Phase Miscibility and Crystal Phases in Blends of Polymorphic Poly(hexamethylene) Tj ETQq1 1 0.784.	314 rgBT / 2.7	Overlock 1.0 9
146	Interactions and prediction of phase diagrams in ternary blends comprising poly(vinyl acetate), poly(vinylp-phenol), and poly(methyl methacrylate). Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1147-1160.	2.1	2
147	Thermal and spectroscopy studies on ternary miscibility and phase behavior in blends comprising poly(4-vinyl phenol) and two aryl polyesters. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1339-1350.	2.1	11
148	Effects of lithium salt and poly(4-vinyl phenol) on crystalline and amorphous phases in poly(ethylene) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 21
149	Effects of miscible diluent of poly(ether imide) on ring-banded morphology of poly(trimethylene) Tj ETQq1 1 0.78	4314 rgBT	/Overlock 1)
150	A comparative study on transreactions induced phase changes in blends of poly(trimethylene) Tj ETQq0 0 0 rgBT 843-852.	/Overlock 2.1	10 Tf 50 547 16
151	Novel organosoluble poly(amide-imide)s synthesized from new tetraimide-dicarboxylic acid by condensation with 4,4′-oxydiphthalic anhydride, 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene, trimellitic anhydride, and various aromatic diamines. Journal of Applied Polymer Science, 2006, 101, 2854-2864.	2.6	11
152	Miscibility with Asymmetrical Interactions in Blends of Two Carbonyl-Containing Polymers: Poly(vinyl) Tj ETQq0 0	OʻzgBT/O\	veglock 10 Tf
153	Thermal Behavior of Ring-Band versus Maltese-Cross Spherulites: Case of Monomorphic Poly(ethylene) Tj ETQq1 I	l 0.78431	4 rgBT /Overl
154	Miscibility in Blends of Isotactic/Syndiotactic Polystyrenes at Melt or Quenched Amorphous Solid State. Macromolecular Materials and Engineering, 2006, 291, 1397-1406.	3.6	5
155	Determination of interactions between aryl polyesters and poly(ether imide) via glass transition temperatures of separated phases in immiscible blends. Colloid and Polymer Science, 2005, 284, 66-73.	2.1	5
156	Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly(butylene adipate). Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1662-1672.	2.1	79
157	Characterization and Analyses on Complex Melting, Polymorphism, and Crystal Phases in Melt-Crystallized Poly(hexamethylene terephthalate). Macromolecules, 2005, 38, 4780-4790.	4.8	26
158	Model Compound Study on Networkâ€Forming Reactions Between Poly(4â€Vinyl Phenol) and an Epoxy. Journal of Macromolecular Science - Physics, 2004, 43, 365-383.	1.0	3
159	Reaction-induced miscibility in blends comprised of bisphenol-A polycarbonate and poly(trimethylene) Tj ETQq $1\ 1$	0 _{2.1} 84314	rgBT /Overlo
160	Crystallization regime behavior of poly(pentamethylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1265-1274.	2.1	24
161	Ring-banded spherulites in poly(pentamethylene terephthalate): A model of waving and spiraling lamellae. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4421-4432.	2.1	17
162	Fluorinated polyamides and poly(amide imide)s based on 1,4-bis(4-amino-2-trifluromethylphenoxy)benzene, aromatic dicarboxylic acids, and various monotrimellitimides and bistrimellitimides: Syntheses and properties. Journal of Polymer Science Part A, 2004, 42, 3116-3129.	2.3	29

#	Article	IF	CITATIONS
163	Effects of layered silicates on the confined crystalline morphology of poly(hexamethylene) Tj ETQq1 1 0.784314	rgBT/Over	lock 10 Tf 5
164	Thermal Behavior of VARIOUS sulfone-based diimid-diacids Solvated with Polar Organic Solvents. Journal of Thermal Analysis and Calorimetry, 2003, 74, 843-852.	3.6	3
165	UCST behavior in blend systems of isotactic polystyrene/poly(4-methyl styrene) in comparison with atactic polystyrene/poly(4-methyl styrene). Colloid and Polymer Science, 2003, 281, 1149-1156.	2.1	5
166	Thermal-Induced Crystal/Conformation Transformations in Syndiotactic Polystyrene Films Treated with Different Solvents. Macromolecular Chemistry and Physics, 2003, 204, 1547-1556.	2.2	9
167	Correlation between melting behavior and ringed spherulites in poly(trimethylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 80-93.	2.1	66
168	Thermal, morphology, and NMR characterizations on phase behavior and miscibility in blends of isotactic polystyrene with poly(cyclohexyl methacrylate). Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 772-784.	2.1	12
169	Complete miscibility of ternary aryl polyesters demonstrating a new criterion and horizon for miscibility characterization. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2394-2404.	2.1	22
170	Polymorphism and Phase Transitions upon Annealing in Solvent-Cast vs Quenched Syndiotactic Polystyrene and Its Blends with Atactic Polystyrene. Macromolecules, 2003, 36, 8415-8425.	4.8	17
171	A Novel Quaternary Blend System of Poly(ethy1ene terephthalate), Poly(trimethy1ene terephthalate), Poly(butylene terephthalate), and Poly(ether imide). Polymer Bulletin, 2003, 50, 33-38.	3.3	13
172	Synthesis and properties of poly(amide-imide)s based onN,N?-bis(4-carboxyphenyl)-4,4?-oxydiphthalimide,p-aminobenzoic acid and various aromatic diamines. Polymer International, 2002, 51, 406-416.	3.1	14
173	Temperature and composition effects on polymorphism changes in cold-crystallized miscible blends of syndiotactic and atactic polystyrenes. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 176-180.	2.1	10
174	Binary versus ternary interactions in a completely miscible three-polymer blend system: Poly(?-caprolactone) with two different methacrylic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 747-754.	2.1	15
175	Linear versus nonlinear determinations of equilibrium melting temperatures of poly(trimethylene) Tj ETQq1 1 0.7 Polymer Science, Part B: Polymer Physics, 2002, 40, 1571-1581.	84314 rgB 2.1	T /Overlock 44
176	Title is missing!. Journal of Polymer Research, 2002, 9, 91-96.	2.4	5
177	Solidâ€State NMR Study on Relationships between Miscibility and Chain Mobility in Poly(4â€Methylstyrene)/Poly(Cyclohexyl Methacrylate) Blend. Journal of the Chinese Chemical Society, 2001, 48, 709-716.	1.4	2
178	Infrared spectroscopy study on crystalline and conformational changes in solution-cast syndiotactic polystyrene. Journal of Polymer Research, 2001, 8, 59-67.	2.4	5
179	Miscibility and spherulite growth kinetics in the poly(ethylene oxide)/poly(benzyl methacrylate) system. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 562-572.	2.1	18
180	Mechanisms of reorganization of lamellae in syndiotactic polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3210-3221.	2.1	15

#	Article	IF	CITATIONS
181	Relationships between ringed spherulitic morphology and miscibility in blends of poly(ε-caprolactone) with poly(benzyl methacrylate) versus poly(phenyl methacrylate). Colloid and Polymer Science, 2000, 278, 1032-1042.	2.1	31
182	Prediction and Experimental Verification on Blend Phase Diagrams of Two Structurally Isomeric Polymers:  Poly(4-methylstyrene) and Poly(α-methylstyrene). Macromolecules, 2000, 33, 6892-6895.	4.8	13
183	Window of Acrylonitrile Content for Miscibility in Blends Comprising Poly(styrene-co-acrylonitrile)s and Poly(benzyl methacrylate). Macromolecules, 2000, 33, 4186-4192.	4.8	11
184	Comparison of crystallization kinetics of miscible blends of syndiotactic polystyrene with atactic polystyrene or poly(1,4-dimethyl-p-phenylene oxide). Polymer Engineering and Science, 1999, 39, 825-832.	3.1	12
185	Glass transition and miscibility in blends of two semicrystalline polymers: Poly(aryl ether ketone) and poly(ether ether ketone). Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1485-1494.	2.1	9
186	Thermal transition behavior in the miscible polyester/acrylic polymer pair poly($\hat{l}\mu$ -caprolactone) and poly(phenyl methacrylate). Macromolecular Rapid Communications, 1999, 20, 46-49.	3.9	11
187	Relationships between Polymorphic Crystals and Multiple Melting Peaks in Crystalline Syndiotactic Polystyrene. Macromolecules, 1999, 32, 7836-7844.	4.8	97
188	Miscible Blends Comprising Two Carbonyl-Containing Polymers. Poly(Îμ-caprolactone) with Poly(benzyl) Tj ETQq	0 0 0 rgB1 2.7	「/Overlock 10
189	Polymorphic crystal forms and morphology of syndiotactic polystyrene in miscible states. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2725-2735.	2.1	32
190	Polymer-polymer miscibility in blends of a new poly(aryl ether ketone) with poly(ether imide). Macromolecular Rapid Communications, 1998, 19, 215-218.	3.9	22
191	On the multiple melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state. Macromolecular Chemistry and Physics, 1998, 199, 2041-2049.	2.2	62
192	Reversibility of thermodynamic lower critical solution temperature phenomenon in miscible poly($\hat{l}\mu$ -caprolactone)/poly(benzyl methacrylate). Journal of Polymer Research, 1998, 5, 205-211.	2.4	2
193	Two-stage crystallization kinetics modeling of a miscible blend system containing crystallizable poly(butylene terephthalate). Polymer Engineering and Science, 1998, 38, 583-589.	3.1	17
194	FT-IR Analysis of the Effects of Polymeric Additives on Epoxy Homopolymerization or Hydroxyl Exchanges. Polymer Journal, 1997, 29, 523-528.	2.7	4
195	Peculiar Glass Transition Behavior and Miscibility in a Binary Mixture Comprising Amorphous Poly(ether imide) with Semicrystalline Poly(butylene terephthalate). Macromolecules, 1997, 30, 3626-3631.	4.8	29
196	Sub-Tg molecular relaxation and enthalpy relaxation behavior in amorphous glassy poly(ether imide). Journal of Polymer Research, 1997, 4, 213-219.	2.4	2
197	A nonlinear regression approach to model the physical aging of poly(ether imide). Polymer Engineering and Science, 1997, 37, 173-177.	3.1	9
198	Diffusion-controlled reaction mechanisms during cure in polycarbonate-modified epoxy networks. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2141-2150.	2.1	14

#	Article	IF	CITATIONS
199	Morphology and glass transition behavior of polycarbonate-phenoxy system: Effects of trans-reactions in domain interface regions. Journal of Polymer Science Part A, 1997, 35, 97-103.	2.3	6
200	Effects of solvent treatment on cold crystallization behavior and morphology of poly(ether ether) Tj ETQq0 0 0 r	gBŢ /Over	lock 10 Tf 50
201	Miscibility in a ternary system of poly(ether imide) with semicrystalline poly(ethylene terephthalate) and poly(butylene terephthalate). Macromolecular Rapid Communications, 1996, 17, 615-621.	3.9	23
202	Effects of chemical interlinks on the morphology of polymer-modified epoxy blends. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 789-793.	2.1	5
203	Preparation of crosslinked epoxy microparticles via phase inversion. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2591-2598.	2.1	30
204	Reaction-induced phase separation in a semiinterpenetrating network of reactive ternary blends. Journal of Polymer Science Part A, 1996, 34, 781-788.	2.3	6
205	A differential scanning calorimetry study on poly(ethylene terephthalate) isothermally crystallized at stepwise temperatures: multiple melting behavior re-investigated. Colloid and Polymer Science, 1996, 274, 309-315.	2.1	35
206	Evaluation of interlaminar-toughened poly(etherlmide)-modified epoxy/carbon fiber composites. Polymer Composites, 1996, 17, 799-805.	4.6	24
207	Preparation of crosslinked epoxy microparticles via phase inversion. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2591-2598.	2.1	1
208	Some New Evidence for Polymorphism in Cold-Crystallized and Melt-Crystallized Poly(ether ether) Tj ETQq0 0 0 0	rgBT /Ove	rlock 10 Tf 50
209	Sequential crystallization kinetics of poly(p-phenylene sulfide) doped with carbon or graphite particles. Journal of Applied Polymer Science, 1995, 57, 877-886.	2.6	9
210	Instrumented impact evaluation of a toughened carbon fiber epoxy composite. Polymer Engineering and Science, 1995, 35, 129-136.	3.1	7
211	Effects of solvent treatment on crystallization kinetics of poly(p-phenylene sulfide). Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1985-1993.	2.1	24
212	Miscibility and cure kinetics studies on blends of bisphenol-A polycarbonate and tetraglycidyl-4,4′-diaminodiphenylmethane epoxy cured with an amine. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2235-2244.	2.1	29
213	Morphology and properties of an epoxy alloy system containing thermoplastics and a reactive rubber. Polymer Engineering and Science, 1994, 34, 1664-1673.	3.1	29
214	Time–temperature viscoelastic behavior of an interlaminar-toughened epoxy composite. Journal of Applied Polymer Science, 1993, 50, 1683-1692.	2.6	17
215	Single Crystals Selfâ€Assembled to Sectorâ€Face Dendritic Aggregates by Synchrotron Microbeam Xâ€ray Analysis on Poly(ethylene succinate). Macromolecular Chemistry and Physics, 0, , 2200114.	2.2	1