
Michelle Cain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. Npj Climate and Atmospheric Science, 2022, 5, 5.	6.8	36
2	lsotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210112.	3.4	6
3	Methane and the Paris Agreement temperature goals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200456.	3.4	14
4	Transformations to regenerative food systems—An outline of the FixOurFood project. Nutrition Bulletin, 2022, 47, 106-114.	1.8	4
5	Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical Cycles, 2022, 36, .	4.9	14
6	Agriculture's Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Frontiers in Sustainable Food Systems, 2021, 4, 518039.	3.9	139
7	Further improvement of warming-equivalent emissions calculation. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	44
8	FalRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 2021, 14, 3007-3036.	3.6	34
9	Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. Environmental Research Letters, 2021, 16, 074009.	5.2	33
10	Comment on â€~Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'. Environmental Research Letters, 2021, 16, 068001.	5.2	7
11	Quantifying non-CO2 contributions to remaining carbon budgets. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	10
12	Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environmental Research Letters, 2020, 15, 044023.	5.2	161
13	Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Reviews of Geophysics, 2020, 58, e2019RG000675.	23.0	163
14	Improved calculation of warming-equivalent emissions for short-lived climate pollutants. Npj Climate and Atmospheric Science, 2019, 2, 29.	6.8	162
15	What is the El NiÃ \pm oâ \in "Southern Oscillation?. Weather, 2019, 74, 250-251.	0.7	5
16	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	4.9	353
17	Isoprene hotspots at the Western Coast of Antarctic Peninsula during MASEC′16. Polar Science, 2019, 20, 63-74.	1.2	9
18	Implications of possible interpretations of â€~greenhouse gas balance' in the Paris Agreement. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160445.	3.4	72

MICHELLE CAIN

#	Article	IF	CITATIONS
19	The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.	27.8	116
20	A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	230
21	Measurement of the ¹³ C isotopic signature of methane emissions from northern European wetlands. Global Biogeochemical Cycles, 2017, 31, 605-623.	4.9	52
22	A cautionary tale: A study of a methane enhancement over the North Sea. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7630-7645.	3.3	22
23	Sensitivity of tropospheric ozone to chemical kinetic uncertainties in air masses influenced by anthropogenic and biomass burning emissions. Geophysical Research Letters, 2017, 44, 7472-7481.	4.0	11
24	Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.	4.0	74
25	Methane mole fraction and δ ¹³ C above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics. Geophysical Research Letters, 2016, 43, 11,893.	4.0	14
26	Measurements of δ ¹³ C in CH ₄ and using particle dispersion modeling to characterize sources of Arctic methane within an air mass. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14257-14270.	3.3	22
27	Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016, 30, 1356-1370.	4.9	317
28	Using <i>l´</i> ¹³ C-CH _{4 and <i>l´</i>D-CH₄ to constrain Arctic methane emissions. Atmospheric Chemistry and Physics, 2016, 16, 14891-14908.}	<br 4.9	sub>
29	Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14188-14200.	3.3	10
30	Night-time measurements of HO _{<i>x</i>} during the RONOCO project and analysis of the sources of HO ₂ . Atmospheric Chemistry and Physics, 2015, 15, 8179-8200.	4.9	11
31	Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK. Atmospheric Environment, 2015, 119, 131-143.	4.1	61
32	Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmospheric Chemistry and Physics, 2014, 14, 13159-13174.	4.9	39
33	A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2. Geoscientific Model Development, 2012, 5, 193-221.	3.6	24
34	Quantification of chemical and physical processes influencing ozone during long-range transport using a trajectory ensemble. Atmospheric Chemistry and Physics, 2012, 12, 7015-7039.	4.9	6
35	Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic. Atmospheric Chemistry and Physics, 2008, 8, 7737-7754.	4.9	48
36	Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. Journal of Geophysical Research, 2003, 108, .	3.3	234