
## Michelle Cain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168579/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF          | CITATIONS   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 1  | Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris<br>Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.                                                        | 4.9         | 353         |
| 2  | Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016,<br>30, 1356-1370.                                                                                            | 4.9         | 317         |
| 3  | Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. Journal of Geophysical Research, 2003, 108, .                                       | 3.3         | 234         |
| 4  | A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Npj Climate and Atmospheric Science, 2018, 1, .                                    | 6.8         | 230         |
| 5  | Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Reviews of Geophysics, 2020, 58, e2019RG000675.                                                                              | 23.0        | 163         |
| 6  | Improved calculation of warming-equivalent emissions for short-lived climate pollutants. Npj Climate and Atmospheric Science, 2019, 2, 29.                                                                        | 6.8         | 162         |
| 7  | Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environmental Research Letters, 2020, 15, 044023.        | 5.2         | 161         |
| 8  | Agriculture's Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Frontiers in Sustainable Food Systems, 2021, 4, 518039.                           | 3.9         | 139         |
| 9  | The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.                                                                                                            | 27.8        | 116         |
| 10 | Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.                                         | 4.0         | 74          |
| 11 | Implications of possible interpretations of â€~greenhouse gas balance' in the Paris Agreement.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376,<br>20160445.  | 3.4         | 72          |
| 12 | Evaluation of the performance of different atmospheric chemical transport models and<br>inter-comparison of nitrogen and sulphur deposition estimates for the UK. Atmospheric Environment,<br>2015, 119, 131-143. | 4.1         | 61          |
| 13 | Measurement of the <sup>13</sup> C isotopic signature of methane emissions from northern European wetlands. Global Biogeochemical Cycles, 2017, 31, 605-623.                                                      | 4.9         | 52          |
| 14 | Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic.<br>Atmospheric Chemistry and Physics, 2008, 8, 7737-7754.                                                           | 4.9         | 48          |
| 15 | Further improvement of warming-equivalent emissions calculation. Npj Climate and Atmospheric Science, 2021, 4, .                                                                                                  | 6.8         | 44          |
| 16 | Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands<br>during the MAMM project in summer 2012. Atmospheric Chemistry and Physics, 2014, 14, 13159-13174.            | 4.9         | 39          |
| 17 | Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets.<br>Npj Climate and Atmospheric Science, 2022, 5, 5.                                                           | 6.8         | 36          |
|    | Using<br>& ampiltik ampidt <sup>1</sup> & ampiltik ampidt & ampiltisup& ampidt 13& ampiltikup& ampidt C-CH& ampiltisub& ampidt 4                                                                                  | 18.2mn·l+·/ | sub&amp.at. |

18 <i&amp;gt;l´&amp;lt;/i&amp;gt;&amp;lt;sup&amp;gt;13&amp;lt;/sup&amp;gt;C-CH&amp;lt;sub&amp;gt;4&amp;lt;/sub&amp;gt; and <i&amp;gt;l´&amp;lt;/i&amp;gt;D-CH&amp;lt;sub&amp;gt;4&amp;lt;/sub&amp;gt; to constrain Arctic methane emissions. Atmospheric Chemistry and Physics, 2016, 16, 14891-14908.

MICHELLE CAIN

| #  | Article                                                                                                                                                                                                                                       | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | FalRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 2021, 14, 3007-3036.                                                                               | 3.6 | 34        |
| 20 | Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. Environmental Research Letters, 2021, 16, 074009.                                                          | 5.2 | 33        |
| 21 | A Lagrangian model of air-mass photochemistry and mixing using a trajectory ensemble: the Cambridge<br>Tropospheric Trajectory model of Chemistry And Transport (CiTTyCAT) version 4.2. Geoscientific<br>Model Development, 2012, 5, 193-221. | 3.6 | 24        |
| 22 | Measurements of δ <sup>13</sup> C in CH <sub>4</sub> and using particle dispersion modeling to characterize sources of Arctic methane within an air mass. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14257-14270.             | 3.3 | 22        |
| 23 | A cautionary tale: A study of a methane enhancement over the North Sea. Journal of Geophysical<br>Research D: Atmospheres, 2017, 122, 7630-7645.                                                                                              | 3.3 | 22        |
| 24 | Methane mole fraction and δ <sup>13</sup> C above and below the trade wind inversion at Ascension<br>Island in air sampled by aerial robotics. Geophysical Research Letters, 2016, 43, 11,893.                                                | 4.0 | 14        |
| 25 | Methane and the Paris Agreement temperature goals. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200456.                                                                             | 3.4 | 14        |
| 26 | Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical<br>Cycles, 2022, 36, .                                                                                                                         | 4.9 | 14        |
| 27 | Night-time measurements of<br>HO <sub><i>x</i></sub> during the RONOCO<br>project and analysis of the sources of HO <sub>2</sub> . Atmospheric<br>Chemistry and Physics. 2015. 15. 8179-8200.                                                 | 4.9 | 11        |
| 28 | Sensitivity of tropospheric ozone to chemical kinetic uncertainties in air masses influenced by anthropogenic and biomass burning emissions. Geophysical Research Letters, 2017, 44, 7472-7481.                                               | 4.0 | 11        |
| 29 | Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements<br>and Lagrangian transport modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121,<br>14188-14200.                              | 3.3 | 10        |
| 30 | Quantifying non-CO2 contributions to remaining carbon budgets. Npj Climate and Atmospheric Science, 2021, 4, .                                                                                                                                | 6.8 | 10        |
| 31 | Isoprene hotspots at the Western Coast of Antarctic Peninsula during MASECâ€216. Polar Science, 2019, 20, 63-74.                                                                                                                              | 1.2 | 9         |
| 32 | Comment on â€~Unintentional unfairness when applying new greenhouse gas emissions metrics at<br>country level'. Environmental Research Letters, 2021, 16, 068001.                                                                             | 5.2 | 7         |
| 33 | Quantification of chemical and physical processes influencing ozone during long-range transport using a trajectory ensemble. Atmospheric Chemistry and Physics, 2012, 12, 7015-7039.                                                          | 4.9 | 6         |
| 34 | lsotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA<br>and ZWAMPS flights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering<br>Sciences, 2022, 380, 20210112.        | 3.4 | 6         |
| 35 | What is the El Niño–Southern Oscillation?. Weather, 2019, 74, 250-251.                                                                                                                                                                        | 0.7 | 5         |
| 36 | Transformations to regenerative food systems—An outline of the FixOurFood project. Nutrition<br>Bulletin, 2022, 47, 106-114.                                                                                                                  | 1.8 | 4         |