
José Vicente Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168409/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Frontiers in Microbiology, 2016, 7, 411.	3.5	328
2	Studies on acetate ester production by non-Saccharomyces wine yeasts. International Journal of Food Microbiology, 2001, 70, 283-289.	4.7	265
3	Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology, 2008, 25, 778-785.	4.2	229
4	Acetate ester formation in wine by mixed cultures in laboratory fermentations. International Journal of Food Microbiology, 2003, 86, 181-188.	4.7	208
5	Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant, Cell and Environment, 2005, 28, 709-718.	5.7	153
6	Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Research International, 1999, 32, 491-496.	6.2	134
7	Aroma Compounds in Wine as Influenced by Apiculate Yeasts. Journal of Food Science, 1996, 61, 1247-1250.	3.1	123
8	Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae. International Journal of Food Microbiology, 2009, 135, 68-74.	4.7	111
9	Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chemistry, 2022, 372, 131231.	8.2	91
10	Mycobiota and mycotoxin producing fungi from cocoa beans. International Journal of Food Microbiology, 2008, 125, 336-340.	4.7	90
11	Dietary phytoestrogens improve stroke outcome after transient focal cerebral ischemia in rats. European Journal of Neuroscience, 2006, 23, 703-710.	2.6	70
12	Challenges of the Non-Conventional Yeast Wickerhamomyces anomalus in Winemaking. Fermentation, 2018, 4, 68.	3.0	70
13	Construction of a Genetically Modified Wine YeastStrain Expressing the Aspergillus aculeatus rhaA Gene,Encoding an α- l -Rhamnosidase ofEnologicalInterest. Applied and Environmental Microbiology, 2003, 69, 7558-7562.	3.1	64
14	The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. International Journal of Food Microbiology, 2000, 59, 179-183.	4.7	54
15	Cactus pear (<i>Opuntia ficus-indica</i>) juice fermented with autochthonous <i>Lactobacillus plantarum</i> S-811. Food and Function, 2019, 10, 1085-1097.	4.6	53
16	Quantitative Comparison of Free and Bound Volatiles of Two Commercial Tomato Cultivars (<i>Solanum lycopersicum</i> L.) during Ripening. Journal of Agricultural and Food Chemistry, 2010, 58, 1106-1114.	5.2	50
17	Over-production of the major exoglucanase of leads to an increase in the aroma of wine. International Journal of Food Microbiology, 2005, 103, 57-68.	4.7	46
18	De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microbial Cell Factories. 2015, 14, 136.	4.0	44

José Vicente Gil

#	Article	IF	CITATIONS
19	Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 93-104.	2.3	42
20	Quantitation of Free and Glycosidically Bound Volatiles in and Effect of Glycosidase Addition on Three Tomato Varieties (<i>Solanum lycopersicum</i> L.). Journal of Agricultural and Food Chemistry, 2007, 55, 9170-9176.	5.2	37
21	Effect of Macerating Enzymes on Red Wine Aroma at Laboratory Scale:Â Exogenous Addition or Expression by Transgenic Wine Yeasts. Journal of Agricultural and Food Chemistry, 2001, 49, 5515-5523.	5.2	34
22	Pharmacological profile of phytoestrogens in cerebral vessels: in vitro study with rabbit basilar artery. European Journal of Pharmacology, 2003, 482, 227-234.	3.5	34
23	Measurement of alcohol acetyltransferase and ester hydrolase activities in yeast extracts. Enzyme and Microbial Technology, 2002, 30, 224-230.	3.2	26
24	Effect of Incorporating White, Red or Black Quinoa Flours on Free and Bound Polyphenol Content, Antioxidant Activity and Colour of Bread. Plant Foods for Human Nutrition, 2019, 74, 185-191.	3.2	25
25	Characterization of Cibberella fujikuroi Complex Isolates by Fumonisin B1 and B2 Analysis and by RAPD and Restriction Analysis of PCR-Amplified Internal Transcribed Spacers of Ribosomal DNA. Systematic and Applied Microbiology, 2000, 23, 546-555.	2.8	24
26	Seven DNA polymorphisms in the LDL receptor gene: application to the study of familial hypercholesterolemia in Spain. Clinical Genetics, 1996, 50, 28-35.	2.0	24
27	Antioxidant capacity in fruit of Citrus cultivars with marked differences in pulp coloration: Contribution of carotenoids and vitamin C. Food Science and Technology International, 2021, 27, 210-222.	2.2	24
28	Soy-derived phytoestrogens as preventive and acute neuroprotectors in experimental ischemic stroke: Influence of rat strain. Phytomedicine, 2011, 18, 513-515.	5.3	23
29	The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine. International Journal of Food Microbiology, 2017, 245, 59-65.	4.7	23
30	Quinoa wet-milling: Effect of steeping conditions on starch recovery and quality. Food Hydrocolloids, 2019, 89, 837-843.	10.7	22
31	Candida molischiana β-Glucosidase Production by Saccharomyces cerevisiae and its Application in Winemaking. Journal of Food Science, 2003, 68, 2096-2100.	3.1	15
32	Proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing conditions. International Journal of Food Microbiology, 2011, 147, 162-169.	4.7	15
33	Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase. Food and Chemical Toxicology, 2010, 48, 957-963.	3.6	14
34	Neurosporaxanthin Overproduction by Fusarium fujikuroi and Evaluation of Its Antioxidant Properties. Antioxidants, 2020, 9, 528.	5.1	14
35	GM foods in Spanish newspapers. Trends in Biotechnology, 2002, 20, 285-286.	9.3	7
36	Changes in volatile compounds, flavour-related enzymes and lycopene in a refrigerated tomato juice during processing and storage. European Food Research and Technology, 2021, 247, 975-984.	3.3	7

José Vicente Gil

#	Article	IF	CITATIONS
37	Effect of Enzyme Treatments and Drying Temperatures on Methylpyrazine Content in Cocoa (Theobroma Cacao L.) Powder Extract. Journal of Food Science, 2006, 71, S621-S625.	3.1	6
38	A three-allelic polymorphic system in exon 12 of the LDL receptor gene is highly informative for segregation analysis of familial hypercholesterolemia in the Spanish population. Clinical Genetics, 2008, 50, 50-53.	2.0	6
39	ITS-RFLP characterization of black Aspergillus isolates responsible for ochratoxin A contamination in cocoa beans. European Food Research and Technology, 2009, 229, 751-755.	3.3	6
40	Evaluation of the Ability of Polyphenol Extracts of Cocoa and Red Grape to Promote the Antioxidant Response in Yeast Using a Rapid Multiwell Assay. Journal of Food Science, 2017, 82, 324-332.	3.1	6
41	Ascorbic Acid Content and Transcriptional Profiling of Genes Involved in Its Metabolism during Development of Petals, Leaves, and Fruits of Orange (Citrus sinensis cv. Valencia Late). Plants, 2021, 10, 2590.	3.5	6
42	Changes in the Polyphenolic Profile and Antioxidant Activity of Wheat Bread after Incorporating Quinoa Flour. Antioxidants, 2022, 11, 33.	5.1	6
43	Proteomic Analysis of Saccharomyces cerevisiae Response to Oxidative Stress Mediated by Cocoa Polyphenols Extract. Molecules, 2020, 25, 452.	3.8	5
44	Questions linger over European GM food regulations. Nature Biotechnology, 2004, 22, 149-149.	17.5	4
45	Acyl Transferase Domains of Putative Polyketide Synthase (PKS) Genes in Aspergillus and Penicillium Producers of Ochratoxin A and the Evaluation of PCR Primers to Amplify PKS Sequences in Black Aspergillus Species. Food Science and Technology International, 2009, 15, 97-105.	2.2	4
46	FLO11 expression in clinical and non-clinical Saccharomyces cerevisiae strains and its association with virulence. Annals of Microbiology, 2013, 63, 1423-1431.	2.6	3
47	Evaluation of Carotenoids Protection Against Oxidative Stress in the Animal Model Caenorhabditis elegans. Methods in Molecular Biology, 2020, 2083, 387-401.	0.9	3