Guillaume H V Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiophene-based covalent organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4923-4928.	7.1	291
2	Current Status on Plastic Scintillators Modifications. Chemistry - A European Journal, 2014, 20, 15660-15685.	3.3	107
3	Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 776, 114-128.	1.6	97
4	Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength. Chemistry of Materials, 2017, 29, 5671-5680.	6.7	96
5	Shape control of zincblende CdSe nanoplatelets. Chemical Communications, 2016, 52, 11975-11978.	4.1	92
6	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math> -State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck. Physical Review Letters, 2016, 116, 116802.	7.8	68
7	Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale, 2020, 12, 14448-14458.	5.6	37
8	CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion. ACS Nano, 2020, 14, 4206-4215.	14.6	36
9	An Improved Protocol for the Synthesis of [(η ⁴ -C ₄ R ₄)Co(η ⁵ -C ₅ H ₅)] Complexes. Organometallics, 2012, 31, 126-132.	2.3	32
10	Understanding the behaviour of different metals in loaded scintillators: discrepancy between gadolinium and bismuth. Journal of Materials Chemistry C, 2015, 3, 6006-6011.	5.5	29
11	A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale, 2019, 11, 3958-3967.	5.6	24
12	Size-dependent exciton substructure in CdSe nanoplatelets and its relation to photoluminescence dynamics. Nanoscale, 2019, 11, 12230-12241.	5.6	19
13	X-ray detection capability of bismuth-loaded plastic scintillators. Japanese Journal of Applied Physics, 2015, 54, 102202.	1.5	18
14	Unravelling the true MOF-5 luminescence. RSC Advances, 2020, 10, 18418-18422.	3.6	15
15	Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation. IEEE Transactions on Nuclear Science, 2016, 63, 1551-1564.	2.0	12
16	Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 819, 25-32.	1.6	12
17	Large solubility of lithium carboxylates reaching high rates of ⁶ Li incorporation in polystyrene-based plastic scintillators for fast/thermal neutron and gamma ray detection. Materials Chemistry Frontiers, 2019, 3, 1626-1631.	5.9	11
18	<i>N</i> â€(2â€Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator. Chemistry - A European Journal, 2016, 22, 12074-12080.	3.3	9

#	Article	IF	CITATIONS
19	⁶ Li ₂ ¹⁰ B ₄ O ₇ NPs-loaded plastic scintillators for fast/thermal neutron and gamma ray detection. Materials Chemistry Frontiers, 2019, 3, 1574-1579.	5.9	8
20	Structural Variation of Carbazole Derivatives for Plastic Scintillation Applications. ChemPhotoChem, 2017, 1, 451-458.	3.0	7
21	The role of the secondary fluorophore in ternary plastic scintillators aiming at discriminating fast neutrons from gamma-rays. Journal of Luminescence, 2019, 213, 67-74.	3.1	7
22	Preparation and characterization of cross-linked plastic scintillators. Polymer, 2021, 213, 123214.	3.8	7
23	From Sintering to Particle Discrimination: New Opportunities in Metal–Organic Frameworks Scintillators. Advanced Photonics Research, 2022, 3, .	3.6	7
24	Large irradiation doses can improve the fast neutron/gamma discriminating capability of plastic scintillators. Physical Chemistry Chemical Physics, 2017, 19, 28105-28115.	2.8	6
25	Tuning the decay time of plastic scintillators. Dyes and Pigments, 2019, 165, 112-116.	3.7	4
26	Panâ€lanthanides method for plastic doping, application in photophysics, and scintillation with proof of photoelectric event occurrences. Polymers for Advanced Technologies, 2021, 32, 748-754.	3.2	3
27	Tuning the decay time of liquid scintillators. Journal of Luminescence, 2021, 235, 118021.	3.1	2