
Laura Canesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microscopy Research and Technique, 2002, 57, 469-476.	2.2	375
2	Bivalve molluscs as a unique target group for nanoparticle toxicity. Marine Environmental Research, 2012, 76, 16-21.	2.5	363
3	Melatonin signaling and cell protection function. FASEB Journal, 2010, 24, 3603-3624.	0.5	299
4	Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Marine Environmental Research, 2015, 111, 34-40.	2.5	291
5	Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano) Tj ETQq1 1 0.78	4314 rgBT 4.0	Qverlock
6	Microplastic exposure and effects in aquatic organisms: A physiological perspective. Environmental Toxicology and Pharmacology, 2019, 68, 37-51.	4.0	221
7	Heavy metals and glutathione metabolism in mussel tissues. Aquatic Toxicology, 1999, 46, 67-76.	4.0	212
8	In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicology, 2010, 96, 151-158.	4.0	195
9	Mussels as biological indicators of pollution. Aquaculture, 1991, 94, 225-243.	3.5	192
10	Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environmental Microbiology, 2005, 7, 761-772.	3.8	181
11	Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect <i>in vivo</i> . Journal of Neurochemistry, 2009, 110, 1674-1684.	3.9	169
12	Endocrine disruptors in marine organisms: Approaches and perspectives. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 143, 303-315.	2.6	166
13	Effects of nanomaterials on marine invertebrates. Science of the Total Environment, 2016, 565, 933-940.	8.0	162
14	In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquatic Toxicology, 2013, 132-133, 9-18.	4.0	161
15	Environmental Effects of BPA. Dose-Response, 2015, 13, 155932581559830.	1.6	152
16	Development of an expert system for the integration of biomarker responses in mussels into an animal health index. Biomarkers, 2007, 12, 155-172.	1.9	149
17	Common Strategies and Technologies for the Ecosafety Assessment and Design of Nanomaterials Entering the Marine Environment. ACS Nano, 2014, 8, 9694-9709.	14.6	149
18	Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100, 187-190.	0.2	146

#	Article	IF	CITATIONS
19	Heavy metal effects on lipid peroxidation in the tissues of mytilus gallopro vincialis lam Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1990, 97, 37-42.	0.2	145
20	Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. Environmental Research, 2016, 150, 73-81.	7.5	144
21	Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquatic Toxicology, 2014, 153, 53-65.	4.0	130
22	Immunomodulation by Different Types of N-Oxides in the Hemocytes of the Marine Bivalve Mytilus galloprovincialis. PLoS ONE, 2012, 7, e36937.	2.5	122
23	Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environment International, 2008, 34, 1114-1119.	10.0	118
24	Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. Journal of Hazardous Materials, 2015, 297, 92-100.	12.4	114
25	Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobaeus). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 111, 119-126.	1.6	112
26	Immunomodulation of Mytilus hemocytes by individual estrogenic chemicals and environmentally relevant mixtures of estrogens: In vitro and in vivo studies. Aquatic Toxicology, 2007, 81, 36-44.	4.0	104
27	Rapid effects of 17β-estradiol on cell signaling and function of Mytilus hemocytes. General and Comparative Endocrinology, 2004, 136, 58-71.	1.8	102
28	Environmental estrogens can affect the function of mussel hemocytes through rapid modulation of kinase pathways. General and Comparative Endocrinology, 2004, 138, 58-69.	1.8	102
29	Comparative 16SrDNA Gene-Based Microbiota Profiles of the Pacific Oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a Shellfish Farm (Ligurian Sea, Italy). Microbial Ecology, 2018, 75, 495-504.	2.8	101
30	Impact of cationic polystyrene nanoparticles (PS-NH2) on early embryo development of Mytilus galloprovincialis: Effects on shell formation. Chemosphere, 2017, 186, 1-9.	8.2	93
31	Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment. Environmental Science and Pollution Research, 2020, 27, 8938-8952.	5.3	91
32	Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. Marine Environmental Research, 2014, 99, 1-8.	2.5	90
33	Stress on stress response: A simple monitoring tool in the assessment of a general stress syndrome in mussels. Marine Environmental Research, 1995, 39, 245-248.	2.5	88
34	Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Science of the Total Environment, 2014, 493, 355-364.	8.0	88
35	Effects of sublethal, environmentally relevant concentrations of hexavalent chromium in the gills of Mytilus galloprovincialis. Aquatic Toxicology, 2012, 120-121, 109-118.	4.0	87
36	Signaling pathways involved in the physiological response of mussel hemocytes to bacterial challenge: the role of stress-activated p38 MAP kinases. Developmental and Comparative Immunology, 2002, 26, 325-334.	2.3	86

#	Article	IF	CITATIONS
37	Effects of PCB congeners on the immune function of Mytilus hemocytes: alterations of tyrosine kinase-mediated cell signaling. Aquatic Toxicology, 2003, 63, 293-306.	4.0	85
38	Bisphenol-A alters gene expression and functional parameters in molluscan hepatopancreas. Molecular and Cellular Endocrinology, 2007, 276, 36-44.	3.2	79
39	Effects of Triclosan on Mytilus galloprovincialis hemocyte function and digestive gland enzyme activities: Possible modes of action on non target organisms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 145, 464-472.	2.6	75
40	Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe?. Marine Environmental Research, 2015, 111, 128-134.	2.5	74
41	<i>Vibrio</i> –bivalve interactions in health and disease. Environmental Microbiology, 2020, 22, 4323-4341.	3.8	72
42	Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription. Environmental Pollution, 2016, 218, 996-1004.	7.5	69
43	Biomolecular coronas in invertebrate species: Implications in the environmental impact of nanoparticles. NanoImpact, 2017, 8, 89-98.	4.5	69
44	Effects of blood lipid lowering pharmaceuticals (bezafibrate and gemfibrozil) on immune and digestive gland functions of the bivalve mollusc, Mytilus galloprovincialis. Chemosphere, 2007, 69, 994-1002.	8.2	67
45	Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology, 2018, 12, 847-867.	3.0	64
46	Direct effects of iodothyronines on excess fat storage in rat hepatocytes. Journal of Hepatology, 2011, 54, 1230-1236.	3.7	63
47	Age-related lipid peroxidation in the digestive gland of mussels: The role of the antioxidant defence systems. Experientia, 1991, 47, 454-457.	1.2	60
48	Cu, Zn and Cd content in different tissues of the Antarctic scallop Adamussium colbecki: role of metallothionein in heavy metal homeostasis and detoxication. Marine Ecology - Progress Series, 1993, 95, 163-168.	1.9	60
49	Effects of the brominated flame retardant tetrabromobisphenol-A (TBBPA) on cell signaling and function of Mytilus hemocytes: Involvement of MAP kinases and protein kinase C. Aquatic Toxicology, 2005, 75, 277-287.	4.0	59
50	First data on plastic ingestion by blue sharks (Prionace glauca) from the Ligurian Sea (North-Western) Tj ETQq	0 0 0 rgBT /	Overlock 10 1
51	Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Frontiers in Immunology, 2020, 11, 426.	4.8	59
52	Age-related Differences in Glutathione Metabolism in Mussel Tissues (Mytilus edulis L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 116, 217-221.	1.6	57
53	Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: A transcriptomic and immunohistochemical study. Environmental Research, 2016, 145, 135-144.	7.5	57
54	Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Science of the Total Environment, 2019, 670, 129-137.	8.0	57

#	Article	IF	CITATIONS
55	Lipid peroxidation and level of antioxidant compounds (GSH, vitamin E) in the digestive glands of mussels of three different age groups exposed to anaerobic and aerobic conditions. Marine Environmental Research, 1989, 28, 291-295.	2.5	56
56	Short-term effects of environmentally relevant concentrations of EDC mixtures on Mytilus galloprovincialis digestive gland. Aquatic Toxicology, 2008, 87, 272-279.	4.0	56
57	â€~In vivo' effects of Bisphenol A in Mytilus hemocytes: modulation of kinase-mediated signalling pathways. Aquatic Toxicology, 2005, 71, 73-84.	4.0	55
58	Functional differential immune responses of Mytilus galloprovincialis to bacterial challenge. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 153, 365-371.	1.6	55
59	Immunomodulation by 17β-estradiol in bivalve hemocytes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R664-R673.	1.8	53
60	Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. Journal of Endocrinology, 2011, 210, 59-69.	2.6	52
61	Impact of nanoplastics on hemolymph immune parameters and microbiota composition in Mytilus galloprovincialis. Marine Environmental Research, 2020, 159, 105017.	2.5	51
62	Dynamics of the Pacific oyster pathobiota during mortality episodes in Europe assessed by 16S rRNA gene profiling and a new target enrichment nextâ€generation sequencing strategy. Environmental Microbiology, 2019, 21, 4548-4562.	3.8	49
63	Peptides for Skin Protection and Healing in Amphibians. Molecules, 2019, 24, 347.	3.8	49
64	The Organophosphate Chlorpyrifos Interferes with the Responses to 17β-Estradiol in the Digestive Gland of the Marine Mussel Mytilus galloprovincialis. PLoS ONE, 2011, 6, e19803.	2.5	49
65	Direct effects of Bisphenol A on lipid homeostasis in rat hepatoma cells. Chemosphere, 2013, 91, 1123-1129.	8.2	47
66	Surface Interactions between Escherichia coli and Hemocytes of the Mediterranean Mussel Mytilus galloprovincialis Lam. Leading to Efficient Bacterial Clearance. Applied and Environmental Microbiology, 2001, 67, 464-468.	3.1	46
67	Effects of tumour necrosis factor α (TNFα) on Mytilus haemocytes: role of stress-activated mitogen-activated protein kinases (MAPKs). Biology of the Cell, 2006, 98, 233-244.	2.0	46
68	Effects of 17Î ² -estradiol on mussel digestive gland. General and Comparative Endocrinology, 2007, 153, 40-46.	1.8	46
69	In vitro and in vivo effects of heavy metals on mussel digestive gland hexokinase activity: the role of glutathione. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 120, 261-268.	0.5	45
70	3,5-Diiodo-l-thyronine modulates the expression of genes of lipid metabolism in a rat model of fatty liver. Journal of Endocrinology, 2012, 212, 149-158.	2.6	44
71	Interactions between Mytilus haemocytes and different strains of Escherichia coli and Vibrio cholerae O1 El Tor: role of kinase-mediated signalling. Cellular Microbiology, 2005, 7, 667-674.	2.1	43
72	PAT protein mRNA expression in primary rat hepatocytes: effects of exposure to fatty acids. International Journal of Molecular Medicine, 2010, 25, 505-12.	4.0	43

#	Article	IF	CITATIONS
73	Bacterial killing by mytilus hemocyte monolayers as a model for investigating the signaling pathways involved in mussel immune defence. Marine Environmental Research, 2002, 54, 547-551.	2.5	42
74	Diclofenac affects early embryo development in the marine bivalve Mytilus galloprovincialis. Science of the Total Environment, 2018, 642, 601-609.	8.0	42
75	Interactions between Mytilus galloprovincialis hemocytes and the bivalve pathogens Vibrio aestuarianus 01/032 and Vibrio splendidus LGP32. Fish and Shellfish Immunology, 2013, 35, 1906-1915.	3.6	41
76	Specificity of anti-Vibrio immune response through p38 MAPK and PKC activation in the hemocytes of the mussel Mytilus galloprovincialis. Journal of Invertebrate Pathology, 2010, 105, 49-55.	3.2	40
77	Immunomodulation in Mytilus galloprovincialis by non-toxic doses of hexavalent Chromium. Fish and Shellfish Immunology, 2011, 31, 1026-1033.	3.6	40
78	Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquatic Toxicology, 2018, 200, 13-20.	4.0	39
79	Insulin-like Effect of Zinc in Mytilus Digestive Gland Cells: Modulation of Tyrosine Kinase-Mediated Cell Signaling. General and Comparative Endocrinology, 2001, 122, 60-66.	1.8	38
80	Role for Mannose-Sensitive Hemagglutinin in Promoting Interactions between Vibrio cholerae El Tor and Mussel Hemolymph. Applied and Environmental Microbiology, 2003, 69, 5711-5715.	3.1	38
81	Seasonal variability of different biomarkers in mussels (Mytilus galloprovincialis) farmed at different sites of the Gulf of La Spezia, Ligurian sea, Italy. Marine Pollution Bulletin, 2017, 116, 348-356.	5.0	38
82	Effects of Hg2+ and Cu2+ on the cytosolic Ca2+ level in molluscan blood cells evaluated by confocal microscopy and spectrofluorimetry. Marine Biology, 1994, 119, 557-564.	1.5	37
83	Application of a biomarker battery for the evaluation of the sublethal effects of pollutants in the earthworm Eisenia andrei. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 146, 398-405.	2.6	37
84	Effects of vibrio challenge on digestive gland biomarkers and antioxidant gene expression in Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 152, 399-406.	2.6	35
85	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small, 2020, 16, e2000598.	10.0	35
86	Determination of trace amounts of metalloprotein species in marine mussel samples by high-performance liquid chromatography with inductively coupled plasma atomic emission spectrometric detection. Analyst, The, 1991, 116, 605.	3.5	34
87	Effects of 3,5-Diiodo-L-Thyronine Administration on the Liver of High Fat Diet-Fed Rats. Experimental Biology and Medicine, 2008, 233, 549-557.	2.4	34
88	Growth Factors Stimulate the Activity of Key Glycolytic Enzymes in Isolated Digestive Gland Cells from Mussels (Mytilus galloprovincialis Lam.) through Tyrosine Kinase Mediated Signal Transduction. General and Comparative Endocrinology, 1999, 116, 241-248.	1.8	33
89	Adverse effects of the SSRI antidepressant sertraline on early life stages of marine invertebrates. Marine Environmental Research, 2017, 128, 88-97.	2.5	33
90	Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Frontiers in Immunology, 2021, 12, 618726.	4.8	33

#	Article	IF	CITATIONS
91	Tyrosine kinase-mediated cell signalling in the activation of Mytilus hemocytes: possible role of STAT-like proteins. Biology of the Cell, 2003, 95, 603-613.	2.0	32
92	Susceptibility of <scp><i>V</i></scp> <i>ibrio aestuarianu</i> s 01/032 to the antibacterial activity of <scp><i>M</i></scp> <i>Xi>Mytilus</i> haemolymph: identification of a serum opsonin involved in mannoseâ€sensitive interactions. Environmental Microbiology, 2015, 17, 4271-4279.	3.8	32
93	Effects of nanosilver on Mytilus galloprovincialis hemocytes and early embryo development. Aquatic Toxicology, 2018, 203, 107-116.	4.0	32
94	The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis. PLoS ONE, 2012, 7, e35418.	2.5	30
95	3,5-Diiodo-L-Thyronine Modifies the Lipid Droplet Composition in a Model of Hepatosteatosis. Cellular Physiology and Biochemistry, 2014, 33, 344-356.	1.6	30
96	Proâ€oxidant and antioxidant processes in aquatic invertebrates. Annals of the New York Academy of Sciences, 2015, 1340, 1-7.	3.8	30
97	Effects of dioxin exposure in Eisenia andrei: integration of biomarker data by an Expert System to rank the development of pollutant-induced stress syndrome in earthworms. Chemosphere, 2011, 85, 934-942.	8.2	29
98	Autophagic processes in Mytilus galloprovincialis hemocytes: Effects of Vibrio tapetis. Fish and Shellfish Immunology, 2018, 73, 66-74.	3.6	29
99	Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus. Fish and Shellfish Immunology, 2019, 84, 352-360.	3.6	29
100	Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells. Chemosphere, 2014, 112, 511-518.	8.2	27
101	Integrated cellular stress indices in trace metal contamination: critical evaluation in a field study. Marine Ecology - Progress Series, 1988, 46, 65-70.	1.9	27
102	Effects of heavy metals on lipid peroxidation in mussel tissues. Marine Environmental Research, 1988, 24, 354.	2.5	26
103	Different sol–gel preparations of iron-doped TiO2 nanoparticles: characterization, photocatalytic activity and cytotoxicity. Journal of Sol-Gel Science and Technology, 2016, 80, 152-159.	2.4	25
104	Models of non-Alcoholic Fatty Liver Disease and Potential Translational Value: the Effects of 3,5-L-diiodothyronine. Annals of Hepatology, 2017, 16, 707-719.	1.5	25
105	Pleiotropic effects of hexavalent chromium (CrVI) in Mytilus galloprovincialis digestive gland. Chemosphere, 2011, 83, 1087-1095.	8.2	23
106	Biochemical properties of metalloproteinases from the hemolymph of the mussel Mytilus galloprovincialis Lam Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 128, 507-515.	1.6	21
107	Characterization of the main steps in first shell formation in <i>Mytilus galloprovincialis</i> : possible role of tyrosinase. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192043.	2.6	21
108	Invertebrate Models for Investigating the Impact of Nanomaterials on Innate Immunity: The Example of the Marine Mussel Mytilus spp Current Bionanotechnology, 2017, 2, 77-83.	0.6	21

#	Article	IF	CITATIONS
109	Specificity of Innate Immunity in Bivalves. , 2016, , 79-91.		20
110	Nuclear Receptors and Development of Marine Invertebrates. Genes, 2021, 12, 83.	2.4	20
111	Bisphenol A interferes with first shell formation and development of the serotoninergic system in early larval stages of Mytilus galloprovincialis. Science of the Total Environment, 2021, 758, 144003.	8.0	20

112 Effects of Epidermal Growth Factor on Isolated Digestive Gland Cells from Mussels (Mytilus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 T 1.8 19

113	The Invertebrate Immune System as a Model for Investigating the Environmental Impact of Nanoparticles. , 2014, , 91-112.		19
114	In vivo effects of copper on the calcium homeostasis mechanisms of mussel gill cell plasma membranes. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1996, 113, 421-425.	0.5	18
115	Utilization of Mytilus digestive gland cells for the in vitro screening of potential metabolic disruptors in aquatic invertebrates. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 191, 26-35.	2.6	17
116	Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. Environmental Science: Nano, 2020, 7, 3216-3232.	4.3	17
117	Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Frontiers in Immunology, 2021, 12, 688106.	4.8	17
118	Phenotypical and molecular changes induced by carbamazepine and propranolol on larval stages of Mytilus galloprovincialis. Chemosphere, 2019, 234, 962-970.	8.2	16
119	Conservation of Cell Communication Systems in Invertebrate Host–Defence Mechanisms: Possible Role in Immunity and Disease. Biology, 2020, 9, 234.	2.8	16
120	Functional and Morphological Changes Induced in Mytilus Hemocytes by Selected Nanoparticles. Nanomaterials, 2021, 11, 470.	4.1	16
121	A rapid method for detecting DNA strand breaks in Mytilus galloprovincialis Lam. Induced by genotoxic xenobiotic chemicals. International Journal of Biochemistry & Cell Biology, 1991, 23, 227-229.	0.5	15
122	Brown-Algae Polysaccharides as Active Constituents against Nonalcoholic Fatty Liver Disease. Planta Medica, 2022, 88, 9-19.	1.3	15
123	Insight on signal transduction pathways involved in phagocytosis in the colonial ascidian Botryllus schlosseri. Journal of Invertebrate Pathology, 2013, 112, 260-266.	3.2	14
124	Killing of Vibrio cholerae and Escherichia coli Strains Carrying D-mannose-sensitive Ligands by Mytilus Hemocytes is Promoted by a Multifunctional Hemolymph Serum Protein. Microbial Ecology, 2016, 72, 759-762.	2.8	14
125	In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 219, 95-102.	2.6	13
126	Bisphenol a Interferes with Uterine Artery Features and Impairs Rat Feto-Placental Growth. International Journal of Molecular Sciences, 2021, 22, 6912.	4.1	13

#	Article	lF	CITATIONS
127	Biochemical characterization of a copper-thionein involved in Cu accumulation in the lysosomes of the digestive gland of mussels exposed to the metal. Marine Environmental Research, 1988, 24, 163-166.	2.5	12
128	Purification and biochemical characterization of a lysosomal copper-rich thionein-like protein involved in metal detoxification in the digestive gland of mussels. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1989, 93, 389-395.	0.2	12
129	Growth factor-mediated signal transduction and redox balance in isolated digestive gland cells from Mytilus galloprovincialis Lam Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 2000, 125, 355-363.	0.5	12
130	Aromatase mRNA expression in the brain of adult Xenopus laevis exposed to Lambro river water and endocrine disrupting compounds. General and Comparative Endocrinology, 2010, 168, 262-268.	1.8	12
131	Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Frontiers in Endocrinology, 2022, 13, 792589.	3.5	12
132	Immunoelectron microscope analysis of epidermal growth factor receptor (EGFR) in isolatedMytilus galloprovincialis (Lam.) digestive gland cells: Evidence for ligand-induced changes in EGFR intracellular distribution. , 2000, 286, 690-698.		10
133	Characterization of metalloproteinase-like activities in barnacle (Balanus amphitrite) nauplii. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 135, 17-24.	1.6	10
134	Responses of Mytilus galloprovincialis hemocytes to environmental strains of Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio vulnificus. Fish and Shellfish Immunology, 2017, 65, 80-87.	3.6	10
135	Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 222, 135-144.	2.6	10
136	Electroanalysis and Chemometrics of Speciation of Natural Waters – continued. Analytical Proceedings, 1991, 28, 72-81.	0.4	9
137	Antioxidant and Antisteatotic Activities of a New Fucoidan Extracted from Ferula hermonis Roots Harvested on Lebanese Mountains. Molecules, 2021, 26, 1161.	3.8	9
138	Facile synthesis of NIR and Visible luminescent Sm 3+ doped lutetium oxide nanoparticles. Materials Research Bulletin, 2017, 86, 220-227.	5.2	8
139	Hg2+ and Cu2+ interfere with agonist-mediated Ca2+ signaling in isolated Mytilus digestive gland cells. Aquatic Toxicology, 2000, 49, 1-11.	4.0	7
140	Insight into the microbial communities associated with first larval stages of Mytilus galloprovincialis: Possible interference by estrogenic compounds. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 237, 108833.	2.6	7
141	Tetrabromobisphenol A acts a neurodevelopmental disruptor in early larval stages of Mytilus galloprovincialis. Science of the Total Environment, 2021, 793, 148596.	8.0	7
142	Comparison of Different Commercial Nanopolystyrenes: Behavior in Exposure Media, Effects on Immune Function and Early Larval Development in the Model Bivalve Mytilus galloprovincialis. Nanomaterials, 2021, 11, 3291.	4.1	7
143	Heavy metal and growth hormone pathways in metallothionein regulation in fish RTH-149 cell line. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 149, 572-580.	2.6	6
144	Ceramide Aminoethylphosphonate as a New Molecular Target for Pore-Forming Aegerolysin-Based Protein Complexes. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	6

#	Article	IF	CITATIONS
145	Effects of Fruit and Vegetable Low Molecular Mass Fractions on Gene Expression in Gingival Cells Challenged with <i>Prevotella intermedia</i> and <i>Actinomyces naeslundii</i> . Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	5
146	Sublethal Effects of Nanoparticles on Aquatic Invertebrates, from Molecular to Organism Level. , 2019, , 38-61.		5
147	Vibrio cholerae interactions with Mytilus galloprovincialis hemocytes mediated by serum components. Frontiers in Microbiology, 2013, 4, 371.	3.5	4
148	Photocatalytic Fe-doped n-TiO 2 : From synthesis to utilization of in vitro cell models for screening human and environmental nanosafety. Resource-efficient Technologies, 2017, 3, 158-165.	0.1	4
149	A deepâ€sea bacterium related to coastal marine pathogens. Environmental Microbiology, 2021, 23, 5349-5363.	3.8	4
150	Antioxidant and Antisteatotic Activities of Fucoidan Fractions from Marine and Terrestrial Sources. Molecules, 2021, 26, 4467.	3.8	4
151	Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. Frontiers in Toxicology, 2022, 4, 842469.	3.1	4
152	Interactions between Mytilus haemocytes and different strains of Escherichia coli and Vibrio cholerae O1 El Tor: role of kinase-mediated signalling. Cellular Microbiology, 2005, 7, 1051-1052.	2.1	2
153	lschemia-reperfusion damage is attenuated by GQ-11, a peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, after aorta clamping in rats Life Sciences, 2022, 297, 120468.	4.3	2
154	Cellular and molecular responses to TiO2 nanoparticles in Mytilus galloprovincialis: Effects on immune and digestive gland function. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 163, S11-S12.	1.8	1
155	P310A new dual-PPAR agonist (GQ-11), prevents ischemia-reperfusion damage in rats after supraceliac aorta clamping. European Heart Journal Cardiovascular Imaging, 2019, 20, .	1.2	0
156	Use of an in vitro model of hepatic steatosis for studying the anti-oxidant and antisteatotic effects of fucoidan polysaccharides. Biomedical Science and Engineering, 2020, 3, .	0.0	0
157	Ischemia-Reperfusion Damage is Attenuated by GQ-11, A Peroxisome Proliferator-Activated Receptor (PPAR)-α/γ Agonist, after Aorta Clamping in Rats. SSRN Electronic Journal, 0, , .	0.4	Ο